451,842 research outputs found

    Simple traffic measures significantly reduce the exposure of primary school children to NO<sub>2</sub>

    Get PDF
    According to Public Health England (PHE, 2019) air quality is the largest environmental health risk in the UK; long-term exposure to air pollution claims some 28-36,000 premature deaths each year. It shortens lives and contributes to chronic illness. Health can be affected both by short-term, high-pollution episodes and by long-term exposure to lower levels of pollution. Environmental Health Officers (EHOs) are directly involved in managing and monitoring local air quality, but often direct action is only taken when there are exceedances of statutory limits and standards. A previous publication, REHIS Journal Autumn 2018, makes the case that long term exposure to lower than limit levels of air pollution can have significant health impacts in later life and that the developing lungs of children are at risk. PHE goes on to state that ‘effective communication of health messages about air pollution and appropriate action can save lives and improve quality of life for many’ (PHE, 2019)

    Road-traffic pollution and asthma – using modelled exposure assessment for routine public health surveillance

    Get PDF
    Asthma is a common disease and appears to be increasing in prevalence. There is evidence linking air pollution, including that from road-traffic, with asthma. Road traffic is also on the increase. Routine surveillance of the impact of road-traffic pollution on asthma, and other diseases, would be useful in informing local and national government policy in terms of managing the environmental health risk. Several methods for exposure assessment have been used in studies examining the association between asthma and road traffic pollution. These include comparing asthma prevalence in areas designated as high and low pollution areas, using distance from main roads as a proxy for exposure to road traffic pollution, using traffic counts to estimate exposure, using vehicular miles travelled and using modelling techniques. Although there are limitations to all these methods, the modelling approach has the advantage of incorporating several variables and may be used for prospective health impact assessment. The modelling approach is already in routine use in the United Kingdom in support of the government's strategy for air quality management. Combining information from such models with routinely collected health data would form the basis of a routine public health surveillance system. Such a system would facilitate prospective health impact assessment, enabling policy decisions concerned with road-traffic to be made with knowledge of the potential implications. It would also allow systematic monitoring of the health impacts when the policy decisions and plans have been implemented

    A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5_{2.5} concentration

    Get PDF
    A typical problem in air pollution epidemiology is exposure assessment for individuals for which health data are available. Due to the sparsity of monitoring sites and the limited temporal frequency with which measurements of air pollutants concentrations are collected (for most pollutants, once every 3 or 6 days), epidemiologists have been moving away from characterizing ambient air pollution exposure solely using measurements. In the last few years, substantial research efforts have been placed in developing statistical methods or machine learning techniques to generate estimates of air pollution at finer spatial and temporal scales (daily, usually) with complete coverage. Some of these methods include: geostatistical techniques, such as kriging; spatial statistical models that use the information contained in air quality model outputs (statistical downscaling models); linear regression modeling approaches that leverage the information in GIS covariates (land use regression); or machine learning methods that mine the information contained in relevant variables (neural network and deep learning approaches). Although some of these exposure modeling approaches have been used in several air pollution epidemiological studies, it is not clear how much the predicted exposures generated by these methods differ, and which method generates more reliable estimates. In this paper, we aim to address this gap by evaluating a variety of exposure modeling approaches, comparing their predictive performance and computational difficulty. Using PM2.5_{2.5} in year 2011 over the continental U.S. as case study, we examine the methods' performances across seasons, rural vs urban settings, and levels of PM2.5_{2.5} concentrations (low, medium, high)

    Estimating exposure response functions using ambient pollution concentrations

    Get PDF
    This paper presents an approach to estimating the health effects of an environmental hazard. The approach is general in nature, but is applied here to the case of air pollution. It uses a computer model involving ambient pollution and temperature input to simulate the exposures experienced by individuals in an urban area, while incorporating the mechanisms that determine exposures. The output from the model comprises a set of daily exposures for a sample of individuals from the population of interest. These daily exposures are approximated by parametric distributions so that the predictive exposure distribution of a randomly selected individual can be generated. These distributions are then incorporated into a hierarchical Bayesian framework (with inference using Markov chain Monte Carlo simulation) in order to examine the relationship between short-term changes in exposures and health outcomes, while making allowance for long-term trends, seasonality, the effect of potential confounders and the possibility of ecological bias. The paper applies this approach to particulate pollution (PM10) and respiratory mortality counts for seniors in greater London (≥65 years) during 1997. Within this substantive epidemiological study, the effects on health of ambient concentrations and (estimated) personal exposures are compared. The proposed model incorporates within day (or between individual) variability in personal exposures, which is compared to the more traditional approach of assuming a single pollution level applies to the entire population for each day. Effects were estimated using single lags and distributed lag models, with the highest relative risk, RR=1.02 (1.01–1.04), being associated with a lag of two days ambient concentrations of PM10. Individual exposures to PM10 for this group (seniors) were lower than the measured ambient concentrations with the corresponding risk, RR=1.05 (1.01–1.09), being higher than would be suggested by the traditional approach using ambient concentrations

    Air Pollution Exposure Assessment for Epidemiologic Studies of Pregnant Women and Children: Lessons Learned from the Centers for Children’s Environmental Health and Disease Prevention Research

    Get PDF
    The National Children’s Study is considering a wide spectrum of airborne pollutants that are hypothesized to potentially influence pregnancy outcomes, neurodevelopment, asthma, atopy, immune development, obesity, and pubertal development. In this article we summarize six applicable exposure assessment lessons learned from the Centers for Children’s Environmental Health and Disease Prevention Research that may enhance the National Children’s Study: a) Selecting individual study subjects with a wide range of pollution exposure profiles maximizes spatial-scale exposure contrasts for key pollutants of study interest. b) In studies with large sample sizes, long duration, and diverse outcomes and exposures, exposure assessment efforts should rely on modeling to provide estimates for the entire cohort, supported by subject-derived questionnaire data. c) Assessment of some exposures of interest requires individual measurements of exposures using snapshots of personal and microenvironmental exposures over short periods and/or in selected microenvironments. d) Understanding issues of spatial–temporal correlations of air pollutants, the surrogacy of specific pollutants for components of the complex mixture, and the exposure misclassification inherent in exposure estimates is critical in analysis and interpretation. e) “Usual” temporal, spatial, and physical patterns of activity can be used as modifiers of the exposure/outcome relationships. f) Biomarkers of exposure are useful for evaluation of specific exposures that have multiple routes of exposure. If these lessons are applied, the National Children’s Study offers a unique opportunity to assess the adverse effects of air pollution on interrelated health outcomes during the critical early life period

    Reducing Urban Pollution Exposure from Road Transport(RUPERT)

    Get PDF
    This paper presents the preliminary results of a two-year study on reducing urban pollution exposure from road transport (RUPERT). The main aim of this project is to develop a new modelling framework for nitrogen dioxide, carbon monoxide and particulate matter to simulate exposures of different population groups across a city, and to assess the impact of roadside concentrations on these exposures. This will be achieved by modelling the frequency distribution of personal exposures (PEFDs) as a function of urban background and roadside concentrations, under different traffic conditions. The modelling approach combines new and existing models relating traffic and air pollution data, with particular emphasis of the impact of congestion, and the probabilistic modelling framework of personal exposure. Modelling of roadside concentrations consists of two main elements, namely the analysis of concentrations patterns at different roadside sites and of the relationship between traffic conditions and added roadside pollution. Roadside concentrations are predicted using empirically derived relationships; statistical models, novel statistics and artificial neural networks namely feed forward neural network and radial basis neural network. The exposure modelling is carried out by linking two models: the INDAIR model, which is designed to simulate probabilistically diurnal profiles of air pollutant concentrations in a range of microenvironments, and the EXPAIR model, which is designed to simulate population exposure patterns based on population time-activity patterns and a library of micro-environmental concentrations derived from the INDAIR model

    Design of the Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) AIR Study.

    Get PDF
    IntroductionPopulation-based epidemiological evidence suggests that exposure to ambient air pollutants increases hospitalisations and mortality from chronic obstructive pulmonary disease (COPD), but less is known about the impact of exposure to air pollutants on patient-reported outcomes, morbidity and progression of COPD.Methods and analysisThe Subpopulations and Intermediate Outcome Measures in COPD (SPIROMICS) Air Pollution Study (SPIROMICS AIR) was initiated in 2013 to investigate the relation between individual-level estimates of short-term and long-term air pollution exposures, day-to-day symptom variability and disease progression in individuals with COPD. SPIROMICS AIR builds on a multicentre study of smokers with COPD, supplementing it with state-of-the-art air pollution exposure assessments of fine particulate matter, oxides of nitrogen, ozone, sulfur dioxide and black carbon. In the parent study, approximately 3000 smokers with and without airflow obstruction are being followed for up to 3 years for the identification of intermediate biomarkers which predict disease progression. Subcohorts undergo daily symptom monitoring using comprehensive daily diaries. The air monitoring and modelling methods employed in SPIROMICS AIR will provide estimates of individual exposure that incorporate residence-specific infiltration characteristics and participant-specific time-activity patterns. The overarching study aim is to understand the health effects of short-term and long-term exposures to air pollution on COPD morbidity, including exacerbation risk, patient-reported outcomes and disease progression.Ethics and disseminationThe institutional review boards of all the participating institutions approved the study protocols. The results of the trial will be presented at national and international meetings and published in peer-reviewed journals

    Pricing local emission exposure of road traffic: An agent-based approach

    Get PDF
    This paper proposes a new approach to iteratively calculate local air pollution exposure tolls in large-scale urban settings by taking the exposure times and locations of individuals into consideration. It explicitly avoids detailed air pollution concentration calculations and is therefore characterized by little data requirements, reasonable computation times for iterative calculations, and open-source compatibility. In a first step, the paper shows how to derive time-dependent vehicle-specific exposure tolls in an agent-based model. It closes the circle from the polluting entity, to the receiving entity, to damage costs, to tolls, and back to the behavioral change of the polluting entity. In a second step, the approach is applied to a large-scale real-world scenario of the Munich metropolitan area in Germany. Changes in emission levels, exposure costs, and user benefits are calculated. These figures are compared to a flat emission toll, and to a regulatory measure (a speed reduction in the inner city), respectively. The results indicate that the flat emission toll reduces overall emissions more significantly than the exposure toll, but its exposure cost reductions are rather small. For the exposure toll, overall emissions increase for freight traffic which implies a potential conflict between pricing schemes to optimize local emission exposure and others to abate climate change. Regarding the mitigation of exposure costs caused by urban travelers, the regulatory measure is found to be an effective strategy, but it implies losses in user benefits
    corecore