149,091 research outputs found

    Mixed Polling with Rerouting and Applications

    Full text link
    Queueing systems with a single server in which customers wait to be served at a finite number of distinct locations (buffers/queues) are called discrete polling systems. Polling systems in which arrivals of users occur anywhere in a continuum are called continuous polling systems. Often one encounters a combination of the two systems: the users can either arrive in a continuum or wait in a finite set (i.e. wait at a finite number of queues). We call these systems mixed polling systems. Also, in some applications, customers are rerouted to a new location (for another service) after their service is completed. In this work, we study mixed polling systems with rerouting. We obtain their steady state performance by discretization using the known pseudo conservation laws of discrete polling systems. Their stationary expected workload is obtained as a limit of the stationary expected workload of a discrete system. The main tools for our analysis are: a) the fixed point analysis of infinite dimensional operators and; b) the convergence of Riemann sums to an integral. We analyze two applications using our results on mixed polling systems and discuss the optimal system design. We consider a local area network, in which a moving ferry facilitates communication (data transfer) using a wireless link. We also consider a distributed waste collection system and derive the optimal collection point. In both examples, the service requests can arrive anywhere in a subset of the two dimensional plane. Namely, some users arrive in a continuous set while others wait for their service in a finite set. The only polling systems that can model these applications are mixed systems with rerouting as introduced in this manuscript.Comment: to appear in Performance Evaluatio

    Analysis and optimization of vacation and polling models with retrials

    Get PDF
    We study a vacation-type queueing model, and a single-server multi-queue polling model, with the special feature of retrials. Just before the server arrives at a station there is some deterministic glue period. Customers (both new arrivals and retrials) arriving at the station during this glue period will be served during the visit of the server. Customers arriving in any other period leave immediately and will retry after an exponentially distributed time. Our main focus is on queue length analysis, both at embedded time points (beginnings of glue periods, visit periods and switch- or vacation periods) and at arbitrary time points.Comment: Keywords: vacation queue, polling model, retrials Submitted for review to Performance evaluation journal, as an extended version of 'Vacation and polling models with retrials', by Onno Boxma and Jacques Resin
    corecore