17,455 research outputs found

    Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids and its modification by Stearoyl-CoA desaturases and cyclic AMP

    Get PDF
    Podocyte apoptosis is a hallmark in the development and progression of diabetic nephropathy (DN). Several factors of the diabetic milieu are known to induce podocyte apoptosis. Currently, the role of free fatty acids (FFAs) for podocytopathy and podocyte cell death is unknown, although FFAs are considered to be crucially involved in the development of diabetes mellitus type II. It is well known that FFAs are toxic to several cell types including pancreatic § cells and they may contribute to the development of insulin resistance. The aims of this study were to elucidate the role of the saturated palmitic acid and the monounsaturated palmitoleic and oleic acid on podocyte cell death and endoplasmic reticulum (ER)-stress, to investigate more specifically the impact of ER-stress on podocyte survival as well as to elaborate strategies to protect podocytes from lipotoxicity. The present study uncovered that palmitic acid induces podocyte apoptosis and necrosis and leads to ER-stress as reflected by induction of the unfolded protein response (UPR), i.e. upregulation of the ER chaperone immunoglobulin heavy chain binding protein (BiP), X-box protein 1 (XBP-1) mRNA splicing, and a strong upregulation of the proapoptotic transcription factor C/EBP homologous protein (CHOP). Gene silencing experiments of CHOP support a crucial involvment of CHOP and ER-stress in mediating the proapoptotic effect of palmitic acid in podocytes. Contrariwise, monounsaturated FFAs (MUFAs) such as palmitoleic and oleic acid prevent palmitic acid-induced podocyte death and attenuate ER-stress. This study further revealed that the liver X receptor (LXR) agonist TO901317 (TO) ameliorates survival of palmitic acid-treated podocytes. Mechanistically, this beneficial effect can be explained mainly by the induction of stearoyl-CoA desaturase (SCD-) 1 and 2 as shown by gene silencing experiments and further supported from overexpression studies of SCD-1. Moreover, palmitic acid tracing experiments revealed a higher incorporation of palmitic acid into the triglyceride (TG) fraction in podocytes treated with TO or oleic acid, which is at least compatible with a benefit of increased fatty acid storage, by TO, i.e. SCDs, and MUFAs, respectively. In addition, this study provides some preliminary data that adenylate cyclases (AC) may be an interesting target to protect podocytes from ER-stress in general and in particular from palmitic acid-induced podocytopathy and cell death. Experiments with forskolin, a specific AC agonist, and cyclic AMP (cAMP) analogons protect from palmitic acid-induced podocyte lipotoxicity. The effect cannot be explained by an involvment of PKA-CREB signaling as overexpression of a dominant negative CREB mutant could not abrogate the protective effect of forskolin. Furthermore, the beneficial impact of forskolin is not influencing the intrinisic (mitochondrial) apoptotic pathway. However, in addition to the protection from palmitic acid-induced cell death, forskolin is suppressing podocyte death caused by other independent ER-stressors such as tunicamycin and thapsigargin. These findings suggest a direct role of forskolin and increased cAMP levels for a protection from ER-stress in podocytes. In summary, this study unveiled antagonistic effects of palmitic acid versus monounsaturated FFAs for podocyte survival, ER-stress and the UPR. They support an important role of CHOP in the regulation of podocyte death by FFAs. Similarly to exogenous MUFAs, induction of SCDs partially protects podocytes from palmitic acid-induced ER-stress and podocyte death. The protective effect of MUFAs may be related to increased incorporation of palmitic acid into TGs. Additional, preliminary data indicate that AC agonists such as forskolin may be interesting compounds to protect podocytes from ER-stress and from the toxic effects of FFAs. The results of this study offer a rationale for interventional studies aimed at testing whether dietary shifting of the FFA balance toward MUFAs, or tissue- (podocyte-) specific stimulation or overexpression of SCDs can delay the progression of DN. Similarly, the results of this study should encourage more studies to evaluate the therapeutic potential of AC agonists or phosphodiesterase inhibitors for the prevention and treatment of DN

    Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease

    Get PDF
    Rho-family GTPases like RhoA and Rac-1 are potent regulators of cellular signaling that control gene expression, migration and inflammation. Activation of Rho-GTPases has been linked to podocyte dysfunction, a feature of chronic kidney diseases (CKD). We investigated the effect of Rac-1 and Rho kinase (ROCK) inhibition on progressive renal failure in mice and studied the underlying mechanisms in podocytes. SV129 mice were subjected to 5/6-nephrectomy which resulted in arterial hypertension and albuminuria. Subgroups of animals were treated with the Rac-1 inhibitor EHT1846, the ROCK inhibitor SAR407899 and the ACE inhibitor Ramipril. Only Ramipril reduced hypertension. In contrast, all inhibitors markedly attenuated albumin excretion as well as glomerular and tubulo-interstitial damage. The combination of SAR407899 and Ramipril was more effective in preventing albuminuria than Ramipril alone. To study the involved mechanisms, podocytes were cultured from SV129 mice and exposed to static stretch in the Flexcell device. This activated RhoA and Rac-1 and led via TGFβ to apoptosis and a switch of the cells into a more mesenchymal phenotype, as evident from loss of WT-1 and nephrin and induction of α-SMA and fibronectin expression. Rac-1 and ROCK inhibition as well as blockade of TGFβ dramatically attenuated all these responses. This suggests that Rac-1 and RhoA are mediators of podocyte dysfunction in CKD. Inhibition of Rho-GTPases may be a novel approach for the treatment of CKD

    Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial.

    Get PDF
    Trial designThis analysis characterizes the degree of early organ involvement in a cohort of oligo-symptomatic untreated young patients with Fabry disease enrolled in an ongoing randomized, open-label, parallel-group, phase 3B clinical trial.MethodsMales aged 5-18 years with complete α-galactosidase A deficiency, without symptoms of major organ damage, were enrolled in a phase 3B trial evaluating two doses of agalsidase beta. Baseline disease characteristics of 31 eligible patients (median age 12 years) were studied, including cellular globotriaosylceramide (GL-3) accumulation in skin (n = 31) and kidney biopsy (n = 6; median age 15 years; range 13-17 years), renal function, and glycolipid levels (plasma, urine).ResultsPlasma and urinary GL-3 levels were abnormal in 25 of 30 and 31 of 31 patients, respectively. Plasma lyso-GL-3 was elevated in all patients. GL-3 accumulation was documented in superficial skin capillary endothelial cells (23/31 patients) and deep vessel endothelial cells (23/29 patients). The mean glomerular filtration rate (GFR), measured by plasma disappearance of iohexol, was 118.1 mL/min/1.73 m(2) (range 90.4-161.0 mL/min/1.73 m(2)) and the median urinary albumin/creatinine ratio was 10 mg/g (range 4.0-27.0 mg/g). On electron microscopy, renal biopsy revealed GL-3 accumulation in all glomerular cell types (podocytes and parietal, endothelial, and mesangial cells), as well as in peritubular capillary and non-capillary endothelial, interstitial, vascular smooth muscle, and distal tubules/collecting duct cells. Lesions indicative of early Fabry arteriopathy and segmental effacement of podocyte foot processes were found in all 6 patients.ConclusionsThese data reveal that in this small cohort of children with Fabry disease, histological evidence of GL-3 accumulation, and cellular and vascular injury are present in renal tissues at very early stages of the disease, and are noted before onset of microalbuminuria and development of clinically significant renal events (e.g. reduced GFR). These data give additional support to the consideration of early initiation of enzyme replacement therapy, potentially improving long-term outcome.Trial registrationClinicalTrials.gov NCT00701415

    Deletion of diacylglycerol-responsive TRPC genes attenuates diabetic nephropathy by inhibiting activation of the TGFβ1 signaling pathway

    Get PDF
    TRPC6 plays a critical role in proteinuric kidney diseases, and TRPC3 is involved in tubulointerstitialdamage and renal fibrosis in obstructed kidneys. Podocyte loss is a characteristic event in diabetic nephropathy(DN). The aim of this study was to examine whether deletion of the closely related diacylglycerol (DAG)-responsiveTRPCs in mice (TRPC3/6/7-/-) affects diabetes-induced renal dysfunction and podocyte loss. We compared urinevolume, kidney hypertrophy, glomerular enlargement, albuminuria and podocyte loss between wild type (WT) andTRPC3/6/7-/- diabetic mice. Finally, we examined whether the TGFβ1 signaling pathway is changed in diabetic WTand TRPC3/6/7-/- mice. TRPC6 protein in the renal cortex was increased in WT diabetic mice. High glucose (HG)treatment increased TRPC6 expression in human podocytes. TRPC3 protein, however, was not altered in eitherdiabetic mice or HG-treated human podocytes. Although diabetic WT and TRPC3/6/7-/- mice had similar levels ofhyperglycemia, the TRPC3/6/7-/- diabetic mice showed less polyuria, kidney hypertrophy, glomerular enlargement,albuminuria, and had lost less podocytes compared with WT diabetic mice. In addition, we observed decreasedexpression of anti-apoptotic Bcl2 and increased expression of pro-apoptotic cleaved caspase 3 in WT diabetic mice,but such changes were not significant in TRPC3/6/7-/- diabetic mice. Western blot and immunohistochemistry revealedthat TGFβ1, p-Smad2/3, and fibronectin were upregulated in WT diabetic mice; however, expression of thesesignaling molecules was not changed in TRPC3/6/7-/- diabetic mice. In conclusion, deletion of DAG-responsiveTRPCs attenuates diabetic renal injury via inhibiting the upregulation of TGFβ1 signaling in diabetic kidneys.Fil: Liu, Benju. Huazhong University of Science and Technology; ChinaFil: He, Xiju. Huazhong University of Science and Technology; ChinaFil: Li, Shoutian. Yangtze University; ChinaFil: Xu, Benke. Yangtze University; ChinaFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Liao, Yanhong. Huazhong University of Science and Technology; Chin

    CXCL16 and oxLDL are induced in the onset of diabetic nephropathy

    Get PDF
    Diabetic nephropathy (DN) is a major cause of end-stage renal failure worldwide. Oxidative stress has been reported to be a major culprit of the disease and increased oxidized low density lipoprotein (oxLDL) immune complexes were found in patients with DN. In this study we present evidence, that CXCL16 is the main receptor in human podocytes mediating the uptake of oxLDL. In contrast, in primary tubular cells CD36 was mainly involved in the uptake of oxLDL. We further demonstrate that oxLDL down-regulated α3-integrin expression and increased the production of fibronectin in human podocytes. In addition, oxLDL uptake induced the production of reactive oxygen species (ROS) in human podocytes. Inhibition of oxLDL uptake by CXCL16 blocking antibodies abrogated the fibronectin and ROS production and restored α3 integrin expression in human podocytes. Furthermore we present evidence that hyperglycaemic conditions increased CXCL16 and reduced ADAM10 expression in podocytes. Importantly, in streptozotocin-induced diabetic mice an early induction of CXCL16 was accompanied by higher levels of oxLDL. Finally immunofluorescence analysis in biopsies of patients with DN revealed increased glomerular CXCL16 expression, which was paralleled by high levels of oxLDL. In summary, regulation of CXCL16, ADAM10 and oxLDL expression may be an early event in the onset of DN and therefore all three proteins may represent potential new targets for diagnosis and therapeutic intervention in DN

    A new outlook towards kidney injuries

    Get PDF
    Acute and chronic progression of injury to the kidney leads to the failure of the renal system and has become an increasingly important cause of morbidity and mortality. Present diagnosis detects the condition only after irreversible loss of 70 percent of kidney function. Current research is focused only on the clinical manifestations after the kidney injuries and not towards the exact cause of the condition. Here we propose a new outlook- that there is an involvement of a pathogen in the pathogenesis of kidney injuries. Basis for our proposal is given by the similarity of the pathogenesis events occurring between a classical example of hepatitis and kidney injuries. Furthermore, literature regarding the role of early kidney injury biomarkers in innate immunity indicates the involvement of the pathogen. Research in this theme possesses a strong possibility in the development of therapeutic, preventive and management strategies for the acute and chronic kidney injuries

    Whole carcass diets: a role for fibre in gastrointestinal health of cheetahs?

    Get PDF
    This study was undertaken to test the hypothesis that altered podocyte slit protein nephrin distribution is associated with disturbed polarity protein expressions in podocytes from preeclampsia (PE). We examined expressions and distributions of nephrin, podoplanin, polarity protein partitioning defective-3 (PARD-3), and PARD-6 in podocytes from PE. Podocyte cell line (AB 8/13 cells) was used as control. Podocytes were found in all severe PE cases. In contrast, no podocyte was found in the samples from normal pregnancies and mild PE. Compared to control cells, nephrin, PARD-3 and PARD-6 expressions were reduced or lost in podocytes from severe PE. Podoplanin was expressed in podocyte surface membrane on control cells but reduced in podocytes from PE. These findings indicate that loss of slit protein nephrin and polarity protein PARD-3 and PARD-6 on foot processes could explain for podocyte detachment from glomerular basement membrane and lead to podocyte shedding in PE. © The Author(s) 2011.link_to_subscribed_fulltex
    corecore