133,120 research outputs found
The platformer experience dataset
Player modeling and estimation of player experience have become very active research fields within affective computing, human computer interaction, and game artificial intelligence in recent years. For advancing our knowledge and understanding on player experience this paper introduces the Platformer Experience Dataset (PED) - the first open-access game experience corpus - that contains multiple modalities of user data of Super Mario Bros players. The open-access database aims to be used for player experience capture through context-based (i.e. game content), behavioral and visual recordings of platform game players. In addition, the database contains demographical data of the players and self-reported annotations of experience in two forms: ratings and ranks. PED opens up the way to desktop and console games that use video from webcameras and visual sensors and offer possibilities for holistic player experience modeling approaches that can, in turn, yield richer game personalization.peer-reviewe
Modeling player experience in Super Mario Bros
This paper investigates the relationship between level design parameters of platform games, individual playing characteristics and player experience. The investigated design parameters relate to the placement and sizes of gaps in the level and the existence of direction changes; components of player experience include fun, frustration and challenge. A neural network model that maps between level design parameters, playing behavior characteristics and player reported emotions is trained using evolutionary preference learning and data from 480 platform game sessions. Results show that challenge and frustration can be predicted with a high accuracy (77.77% and 88.66% respectively) via a simple single-neuron model whereas model accuracy for fun (69.18%) suggests the use of more complex non-linear approximators for this emotion. The paper concludes with a discussion on how the obtained models can be utilized to automatically generate game levels which will enhance player experience.peer-reviewe
Cognitive Modeling of Video Game Player User Experience
This paper argues for the use of cognitive modeling to gain a detailed and dynamic look into user experience during game play. Applying cognitive models to game play data can help researchers understand a player's attentional focus, memory status, learning state, and decision strategies (among other things) as these cognitive processes occurred throughout game play. This is a stark contrast to the common approach of trying to assess the long-term impact of games on cognitive functioning after game play has ended. We describe what cognitive models are, what they can be used for and how game researchers could benefit by adopting these methods. We also provide details of a single model - based on decision field theory - that has been successfUlly applied to data sets from memory, perception, and decision making experiments, and has recently found application in real world scenarios. We examine possibilities for applying this model to game-play data
Adaptive Artificial Intelligence in Games : Issues, Requirements, and a Solution through Behavlets-based General Player Modelling
8 pages, 1 figureWe present the last of a series of three academic essays which deal with the question of how and why to build a generalized player model. We propose that a general player model needs parameters for subjective experience of play, including: player psychology, game structure, and actions of play. Based on this proposition, we pose three linked research questions: RQ1 what is a necessary and sufficient foundation to a general player model?; RQ2 can such a foundation improve performance of a computational intelligence- based player model?; and RQ3 can such a player model improve efficacy of adaptive artificial intelligence in games? We set out the arguments behind these research questions in each of the three essays, presented as three preprints. The third essay, in this preprint, presents the argument that adaptive game artificial intelligence will be enhanced by a generalised player model. This is because games are inherently human artefacts which therefore, require some encoding of the human perspective in order to effectively autonomously respond to the individual player. The player model informs the necessary constraints on the adaptive artificial intelligence. A generalised player model is not only more efficient than a per-game solution, but also allows comparison between games which makes it a useful tool for studying play in general. We describe the concept and meaning of an adaptive game. We propose requirements for functional adaptive AI, arguing from first principles drawn from the games research literature. We propose solutions to these requirements, based on a formal model approach to our existing 'Behavlets' method for psychologically-derived player modelling: Cowley, B., & Charles, D. (2016). Behavlets: a Method for Practical Player Modelling using Psychology-Based Player Traits and Domain Specific Features. User Modeling and User-Adapted Interaction, 26(2), 257-306.Non peer reviewe
Affect and believability in game characters:a review of the use of affective computing in games
Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions
- …
