62,897 research outputs found

    Inevitability of Plate Tectonics on Super-Earths

    Full text link
    The recent discovery of super-Earths (masses less or equal to 10 earth-masses) has initiated a discussion about conditions for habitable worlds. Among these is the mode of convection, which influences a planet's thermal evolution and surface conditions. On Earth, plate tectonics has been proposed as a necessary condition for life. Here we show, that super-Earths will also have plate tectonics. We demonstrate that as planetary mass increases, the shear stress available to overcome resistance to plate motion increases while the plate thickness decreases, thereby enhancing plate weakness. These effects contribute favorably to the subduction of the lithosphere, an essential component of plate tectonics. Moreover, uncertainties in achieving plate tectonics in the one earth-mass regime disappear as mass increases: super-Earths, even if dry, will exhibit plate tectonic behaviour.Comment: 13 pages, 2 figures and 1 table; in press in ApJ

    The Ability of Significant Tidal Stress to Initiate Plate Tectonics

    Get PDF
    Plate tectonics is a geophysical process currently unique to Earth, has an important role in regulating the Earth's climate, and may be better understood by identifying rocky planets outside our solar system with tectonic activity. The key criterion for whether or not plate tectonics may occur on a terrestrial planet is if the stress on a planet's lithosphere from mantle convection may overcome the lithosphere's yield stress. Although many rocky exoplanets closely orbiting their host stars have been detected, all studies to date of plate tectonics on exoplanets have neglected tidal stresses in the planet's lithosphere. Modeling a rocky exoplanet as a constant density, homogeneous, incompressible sphere, we show the tidal stress from the host star acting on close-in planets may become comparable to the stress on the lithosphere from mantle convection. We also show that tidal stresses from planet-planet interactions are unlikely to be significant for plate tectonics, but may be strong enough to trigger Earthquakes. Our work may imply planets orbiting close to their host stars are more likely to experience plate tectonics, with implications for exoplanetary geophysics and habitability. We produce a list of detected rocky exoplanets under the most intense stresses. Atmospheric and topographic observations may confirm our predictions in the near future. Investigations of planets with significant tidal stress can not only lead to observable parameters linked to the presence of active plate tectonics, but may also be used as a tool to test theories on the main driving force behind tectonic activity.Comment: 34 pages, 3 figures, 3 Tables, accepted to Icaru

    Inter- and intra-plate deformation at North American plate boundaries

    Get PDF
    Alaska tectonics and earthquake hazard studies; Southern California tectonics (block rotation); spreading near the Salton Trough; California plate motion (fault zone kinematics); and Caribbean plate motion investigations are examined

    Plate Tectonics: Earthquake Epicenter

    Get PDF
    This lesson provides an overview of destructive earthquakes and their connection to tectonic movements of the Earth's crust. It includes a discussion of some especially destructive historic earthquakes, and a brief introduction to contintental drift and the theory of plate tectonics. There is also discussion of basic seismology (types of waves) and measures of the magnitude of an earthquake (the Richter Scale). The lesson inlcudes an activity in which students use an online simulator to locate the epicenter of an earthquake using readings from three different seismograph stations. After they have completed the simulation, they attempt to locate the epicenter of a real earthquake using data from the United States Geological Survey (USGS) earthquake website. Educational levels: Undergraduate lower division, High school

    The Theory of Plate Tectonics

    Get PDF
    This is a brief overview of the Theory of Plate Tectonics. According to the theory, the Earth's surface layer, or lithosphere, consists of seven large and 18 smaller plates that move and interact in various ways. Along their boundaries, they converge, diverge, and slip past one another, creating the Earth's seismic and volcanic activities. These plates lie atop a layer of partly molten rock called the asthenosphere. The plates can carry both continents and oceans, or exclusively one or the other. The site also explains interaction at the plate boundaries, which causes earthquakes, volcanoes and other forms of mountain building. Educational levels: Intermediate elementary, Middle school

    Real Evidence of a Subducting Plate

    Get PDF
    The objective of this activity is to allow students to manipulate real data and understand how such data are interpreted and used in support of a theory. The concepts studied are maps, earthquakes, and plate tectonics, particularly a subduction zone plate boundary. The student will learn or be refreshed on using latitude and longitude for mapping purposes. The activity should be used in a unit on plate tectonics so that the student has a basic understanding of plate theory, boundaries, and types of crust. It is also useful to guide a class discussion about the different types of evidence used to support the theory of plate tectonics. Educational levels: High school, Undergraduate lower division
    • …
    corecore