354,264 research outputs found
Mechanical planetary compensating drive system
Drive enables two concentric output shafts to be controlled independently or rotated as a unit. Possible uses are pointing and tracking devices, rotary camera shutters with variable light control, gimbal systems with yaw and pitch movement, spectrometer mirror scanning devices, etc
A new paradigm of governance for a carbon-pricing system
Throughout its life, the United Nations has played a pioneering role in the world of ideas. COP21 – also known as Paris 2015 – shows the path for the United Nations to establish a new governance that will enforce the compliance of a new planetary carbon-pricing system. Maintaining global warming below 2 °C means implementing an efficient carbon-pricing system, supported by effective measures promoting a green energy transition. A planetary carbon governance yields a number of new insights that include the following: (1) a bonus-malus system with a fixed signal price for carbon, (2) a planetary carbon market that will gather existing regional carbon markets, (3) a hybrid carbon-pricing system linking a carbon tax and a carbon market for advanced countries and (4) a support mechanism for emerging and developing countries to assist them with a carbon-pricing system. This new governance will promote an energy transition plan. In the COP21 context, responsible policymaking requires key characteristics for the enforcement of a successful planetary carbon-pricing system
Earth-like Habitats in Planetary Systems
Understanding the concept of habitability is related to an evolutionary
knowledge of the particular planet-in-question. Additional indications
so-called "systemic aspects" of the planetary system as a whole governs a
particular planet's claim on habitability. Here we focus on such systemic
aspects and discuss their relevance to the formation of an 'Earth-like'
habitable planet. We summarize our results obtained by lunar sample work and
numerical models within the framework of the Research Alliance "Planetary
Evolution and Life". We consider various scenarios which simulate the dynamical
evolution of the Solar System and discuss the likelihood of forming an
Earth-like world orbiting another star. Our model approach is constrained by
observations of the modern Solar System and the knowledge of its history.
Results suggest that the long-term presence of terrestrial planets is
jeopardized due to gravitational interactions if giant planets are present. But
habitability of inner rocky planets may be supported in those planetary systems
hosting giant planets.
Gravitational interactions within a complex multiple-body structure including
giant planets may supply terrestrial planets with materials which formed in the
colder region of the proto-planetary disk. During these processes, water, the
prime requisite for habitability, is delivered to the inner system. This may
occur either during the main accretion phase of terrestrial planets or via
impacts during a post-accretion bombardment. Results for both processes are
summarized and discussed with reference to the lunar crater record.
Starting from a scenario involving migration of the giant planets this
contribution discusses the delivery of water to Earth, the modification of
atmospheres by impacts in a planetary system context and the likelihood of the
existence of extrasolar Earth-like habitable worlds.Comment: 36 Pages, 6 figures, 2014, Special Issue in Planetary and Space
Science on the Helmholtz Research Alliance on Planetary Evolution and Lif
Planetary film reconnaissance system
Design, fabrication, assembly of planetary film reconnaissance syste
The 1:1 resonance in Extrasolar Systems: Migration from planetary to satellite orbits
We present families of symmetric and asymmetric periodic orbits at the 1/1
resonance, for a planetary system consisting of a star and two small bodies, in
comparison to the star, moving in the same plane under their mutual
gravitational attraction. The stable 1/1 resonant periodic orbits belong to a
family which has a planetary branch, with the two planets moving in nearly
Keplerian orbits with non zero eccentricities and a satellite branch, where the
gravitational interaction between the two planets dominates the attraction from
the star and the two planets form a close binary which revolves around the
star. The stability regions around periodic orbits along the family are
studied. Next, we study the dynamical evolution in time of a planetary system
with two planets which is initially trapped in a stable 1/1 resonant periodic
motion, when a drag force is included in the system. We prove that if we start
with a 1/1 resonant planetary system with large eccentricities, the system
migrates, due to the drag force, {\it along the family of periodic orbits} and
is finally trapped in a satellite orbit. This, in principle, provides a
mechanism for the generation of a satellite system: we start with a planetary
system and the final stage is a system where the two small bodies form a close
binary whose center of mass revolves around the star.Comment: to appear in Cel.Mech.Dyn.Ast
- …
