500,184 research outputs found
GLUMIP 2.0: SAS/IML Software for Planning Internal Pilots
Internal pilot designs involve conducting interim power analysis (without interim data analysis) to modify the final sample size. Recently developed techniques have been described to avoid the type~I error rate inflation inherent to unadjusted hypothesis tests, while still providing the advantages of an internal pilot design. We present GLUMIP 2.0, the latest version of our free SAS/IML software for planning internal pilot studies in the general linear univariate model (GLUM) framework. The new analytic forms incorporated into the updated software solve many problems inherent to current internal pilot techniques for linear models with Gaussian errors. Hence, the GLUMIP 2.0 software makes it easy to perform exact power analysis for internal pilots under the GLUM framework with independent Gaussian errors and fixed predictors.
Procedural error monitoring and smart checklists
Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form
An investigation into pilot and system response to critical in-flight events, volume 1
The scope of a critical in-flight event (CIFE) with emphasis on pilot management of available resources is described. Detailed scenarios for both full mission simulation and written testing of pilot responses to CIFE's, and statistical relationships among pilot characteristics and observed responses are developed. A model developed to described pilot response to CIFE and an analysis of professional fight crews compliance with specified operating procedures and the relationships with in-flight errors are included
Modeling of 2D and 3D Assemblies Taking Into Account Form Errors of Plane Surfaces
The tolerancing process links the virtual and the real worlds. From the
former, tolerances define a variational geometrical language (geometric
parameters). From the latter, there are values limiting those parameters. The
beginning of a tolerancing process is in this duality. As high precision
assemblies cannot be analyzed with the assumption that form errors are
negligible, we propose to apply this process to assemblies with form errors
through a new way of allowing to parameterize forms and solve their assemblies.
The assembly process is calculated through a method of allowing to solve the 3D
assemblies of pairs of surfaces having form errors using a static equilibrium.
We have built a geometrical model based on the modal shapes of the ideal
surface. We compute for the completely deterministic contact points between
this pair of shapes according to a given assembly process. The solution gives
an accurate evaluation of the assembly performance. Then we compare the results
with or without taking into account the form errors. When we analyze a batch of
assemblies, the problem is to compute for the nonconformity rate of a pilot
production according to the functional requirements. We input probable errors
of surfaces (position, orientation, and form) in our calculus and we evaluate
the quality of the results compared with the functional requirements. The pilot
production then can or cannot be validated
Effects of dynamic aeroelasticity on handling qualities and pilot rating
Pilot performance parameters, such as pilot ratings, tracking errors, and pilot comments were determined for a longitudinal pitch tracking task using a large, flexible bomber with parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes. This pitch tracking task was programmed on a fixed base simulator with an electronic attitude-director display of pitch command, pitch angle, and pitch error. Low frequency structural flexibility significantly affects the handling qualities and pilot ratings in the task evaluated
Simulation study of traffic-sensor noise effects on utilization of traffic situation display for self-spacing task
The effect of traffic sensor noise on the ability of a pilot to perform an intrail spacing task was determined. The tests were conducted in a fixed base cockpit simulator configured as a current generation transport aircraft, with an electronic traffic display provided in the weather radarscope location. The true positions of the traffic were perturbed in both relative range and azimuth by random errors to simulate traffic sensor noise associated with an onboard sensor. The evaluation task involved simulated instrument approaches into a terminal area while maintaining self separation on a lead aircraft. Separation performance data and pilot subjective ratings and comments were obtained. The results of the separation data indicate that displayed traffic position errors, having standard deviation values up to 0.3-n.mi. range and 8 deg azimuth, had negligible effect on the spacing performance achieved by the pilots. Speed profiles of the lead aircraft, display of the lead aircraft groundspeed, and individual pilot techniques were found to significantly affect the mean spacing performance
Pilot estimates of glidepath and aim point during simulated landing approaches
Pilot perceptions of glidepath angle and aim point were measured during simulated landings. A fixed-base cockpit simulator was used with video recordings of simulated landing approaches shown on a video projector. Pilots estimated the magnitudes of approach errors during observation without attempting to make corrections. Pilots estimated glidepath angular errors well, but had difficulty estimating aim-point errors. The data make plausible the hypothesis that pilots are little concerned with aim point during most of an approach, concentrating instead on keeping close to the nominal glidepath and trusting this technique to guide them to the proper touchdown point
A simulation study of the flight dynamics of elastic aircraft. Volume 2: Data
The simulation experiment described addresses the effects of structural flexibility on the dynamic characteristics of a generic family of aircraft. The simulation was performed using the NASA Langley VMS simulation facility. The vehicle models were obtained as part of this research project. The simulation results include complete response data and subjective pilot ratings and comments and so allow a variety of analyses. The subjective ratings and analysis of the time histories indicate that increased flexibility can lead to increased tracking errors, degraded handling qualities, and changes in the frequency content of the pilot inputs. These results, furthermore, are significantly affected by the visual cues available to the pilot
Open up : the mission statement of the Control of Impulsive Action (Ctrl-ImpAct) lab on Open Science
The present paper is the mission statement of the Control of Impulsive Action (Ctrl-ImpAct) Lab regarding Open Science. As early-career researchers (ECRs) in the lab, we first state our personal motivation to conduct research based on the principles of Open Science. We then describe how we incorporate four specific Open Science practices (i.e., Open Methodology, Open Data, Open Source, and Open Access) into our scientific workflow. In more detail, we explain how Open Science practices are embedded into the so-called 'co-pilot' system in our lab. The 'co-pilot' researcher is involved in all tasks of the 'pilot' researcher, that is designing a study, double-checking experimental and data analysis scripts, as well as writing the manuscript. The lab has set up this co-pilot system to increase transparency, reduce potential errors that could occur during the entire workflow, and to intensify collaborations between lab members. Finally, we discuss potential solutions for general problems that could arise when practicing Open Science
Recommended from our members
Learning From Complexity: Effects Of Prior Accidents And Incidents On Airlines' Learning
Using data on accidents and incidents experienced by U.S. commercial airlines from 1983 to 1997, we investigated variation in firm learning by examining whether firms learn more from errors with heterogeneous or homogeneous causes. We measured learning by a reduction in airline accident and incident rates, while controlling for other factors related to accidents and incidents. Our results show that heterogeneity is generally better for learning, as prior heterogeneity in the causes of errors decreases subsequent accident rates, producing a deeper, broader search for causality than simple explanations like >blame the pilot.> The benefits of heterogeneity, however, apply mainly to specialist airlines. Generalist airlines learn, instead, from outside factors such as the experience of others and general improvements in technology. These results suggest a theory of learning across organizational forms: complex forms benefit from simple information, and simple forms benefit from complex information. The implications of our study for learning theories and work on organizational errors are discussed.Business Administratio
- …
