64,843 research outputs found
Ensemble Kalman filter for neural network based one-shot inversion
We study the use of novel techniques arising in machine learning for inverse
problems. Our approach replaces the complex forward model by a neural network,
which is trained simultaneously in a one-shot sense when estimating the unknown
parameters from data, i.e. the neural network is trained only for the unknown
parameter. By establishing a link to the Bayesian approach to inverse problems,
an algorithmic framework is developed which ensures the feasibility of the
parameter estimate w.r. to the forward model. We propose an efficient,
derivative-free optimization method based on variants of the ensemble Kalman
inversion. Numerical experiments show that the ensemble Kalman filter for
neural network based one-shot inversion is a promising direction combining
optimization and machine learning techniques for inverse problems
Fleet Prognosis with Physics-informed Recurrent Neural Networks
Services and warranties of large fleets of engineering assets is a very
profitable business. The success of companies in that area is often related to
predictive maintenance driven by advanced analytics. Therefore, accurate
modeling, as a way to understand how the complex interactions between operating
conditions and component capability define useful life, is key for services
profitability. Unfortunately, building prognosis models for large fleets is a
daunting task as factors such as duty cycle variation, harsh environments,
inadequate maintenance, and problems with mass production can lead to large
discrepancies between designed and observed useful lives. This paper introduces
a novel physics-informed neural network approach to prognosis by extending
recurrent neural networks to cumulative damage models. We propose a new
recurrent neural network cell designed to merge physics-informed and
data-driven layers. With that, engineers and scientists have the chance to use
physics-informed layers to model parts that are well understood (e.g., fatigue
crack growth) and use data-driven layers to model parts that are poorly
characterized (e.g., internal loads). A simple numerical experiment is used to
present the main features of the proposed physics-informed recurrent neural
network for damage accumulation. The test problem consist of predicting fatigue
crack length for a synthetic fleet of airplanes subject to different mission
mixes. The model is trained using full observation inputs (far-field loads) and
very limited observation of outputs (crack length at inspection for only a
portion of the fleet). The results demonstrate that our proposed hybrid
physics-informed recurrent neural network is able to accurately model fatigue
crack growth even when the observed distribution of crack length does not match
with the (unobservable) fleet distribution.Comment: Data and codes (including our implementation for both the multi-layer
perceptron, the stress intensity and Paris law layers, the cumulative damage
cell, as well as python driver scripts) used in this manuscript are publicly
available on GitHub at https://github.com/PML-UCF/pinn. The data and code are
released under the MIT Licens
Sub-grid modelling for two-dimensional turbulence using neural networks
In this investigation, a data-driven turbulence closure framework is
introduced and deployed for the sub-grid modelling of Kraichnan turbulence. The
novelty of the proposed method lies in the fact that snapshots from
high-fidelity numerical data are used to inform artificial neural networks for
predicting the turbulence source term through localized grid-resolved
information. In particular, our proposed methodology successfully establishes a
map between inputs given by stencils of the vorticity and the streamfunction
along with information from two well-known eddy-viscosity kernels. Through this
we predict the sub-grid vorticity forcing in a temporally and spatially dynamic
fashion. Our study is both a-priori and a-posteriori in nature. In the former,
we present an extensive hyper-parameter optimization analysis in addition to
learning quantification through probability density function based validation
of sub-grid predictions. In the latter, we analyse the performance of our
framework for flow evolution in a classical decaying two-dimensional turbulence
test case in the presence of errors related to temporal and spatial
discretization. Statistical assessments in the form of angle-averaged kinetic
energy spectra demonstrate the promise of the proposed methodology for sub-grid
quantity inference. In addition, it is also observed that some measure of
a-posteriori error must be considered during optimal model selection for
greater accuracy. The results in this article thus represent a promising
development in the formalization of a framework for generation of
heuristic-free turbulence closures from data
Data-driven discovery of coordinates and governing equations
The discovery of governing equations from scientific data has the potential
to transform data-rich fields that lack well-characterized quantitative
descriptions. Advances in sparse regression are currently enabling the
tractable identification of both the structure and parameters of a nonlinear
dynamical system from data. The resulting models have the fewest terms
necessary to describe the dynamics, balancing model complexity with descriptive
ability, and thus promoting interpretability and generalizability. This
provides an algorithmic approach to Occam's razor for model discovery. However,
this approach fundamentally relies on an effective coordinate system in which
the dynamics have a simple representation. In this work, we design a custom
autoencoder to discover a coordinate transformation into a reduced space where
the dynamics may be sparsely represented. Thus, we simultaneously learn the
governing equations and the associated coordinate system. We demonstrate this
approach on several example high-dimensional dynamical systems with
low-dimensional behavior. The resulting modeling framework combines the
strengths of deep neural networks for flexible representation and sparse
identification of nonlinear dynamics (SINDy) for parsimonious models. It is the
first method of its kind to place the discovery of coordinates and models on an
equal footing.Comment: 25 pages, 6 figures; added acknowledgment
A neural network approach for the blind deconvolution of turbulent flows
We present a single-layer feedforward artificial neural network architecture
trained through a supervised learning approach for the deconvolution of flow
variables from their coarse grained computations such as those encountered in
large eddy simulations. We stress that the deconvolution procedure proposed in
this investigation is blind, i.e. the deconvolved field is computed without any
pre-existing information about the filtering procedure or kernel. This may be
conceptually contrasted to the celebrated approximate deconvolution approaches
where a filter shape is predefined for an iterative deconvolution process. We
demonstrate that the proposed blind deconvolution network performs
exceptionally well in the a-priori testing of both two-dimensional Kraichnan
and three-dimensional Kolmogorov turbulence and shows promise in forming the
backbone of a physics-augmented data-driven closure for the Navier-Stokes
equations
- …
