843,011 research outputs found
Methods for Analyzing Pathways through a Physics Major
Physics Education Research frequently investigates what students studying
physics do on small time scales (e.g. single courses, observations within
single courses), or post-education time scales (e.g., what jobs do physics
majors get?) but there is little research into how students get from the
beginning to the end of a physics degree. Our work attempts to visualize
students paths through the physics major, and quantitatively describe the
students who take physics courses, receive physics degrees, and change degree
paths into and out of the physics program at Michigan State University.Comment: submitted to Physics Education Research Conference Proceedings 201
Understanding How Students Use Physical Ideas in Introductory Biology Courses
The University of Maryland (UMD) Biology Education and Physics Education
Research Groups are investigating students' views on the role of physics in
introductory biology courses. This paper presents data from an introductory
course that addresses the fundamental principles of organismal biology and that
incorporates several topics directly related to physics, including
thermodynamics, diffusion, and fluid flow. We examine how the instructors use
mathematics and physics in this introductory biology course and look at two
students' responses to this use. Our preliminary observations are intended to
start a discussion about the epistemological issues resulting from the
integration of the science disciplines and to motivate the need for further
research.Comment: Physics Education Research Conference 2010, Portland OR, 4 page
Emerging technologies in physics education
Three emerging technologies in physics education are evaluated from the
interdisciplinary perspective of cognitive science and physics education
research. The technologies - Physlet Physics, the Andes Intelligent Tutoring
System (ITS), and Microcomputer-Based Laboratory (MBL) Tools - are assessed
particularly in terms of their potential at promoting conceptual change,
developing expert-like problem-solving skills, and achieving the goals of the
traditional physics laboratory. Pedagogical methods to maximize the potential
of each educational technology are suggested.Comment: Accepted for publication in the Journal of Science Education and
Technology; 20 page
Modeling student pathways in a physics bachelor's degree program
Physics education research has used quantitative modeling techniques to
explore learning, affect, and other aspects of physics education. However,
these studies have rarely examined the predictive output of the models, instead
focusing on the inferences or causal relationships observed in various data
sets. This research introduces a modern predictive modeling approach to the PER
community using transcript data for students declaring physics majors at
Michigan State University (MSU). Using a machine learning model, this analysis
demonstrates that students who switch from a physics degree program to an
engineering degree program do not take the third semester course in
thermodynamics and modern physics, and may take engineering courses while
registered as a physics major. Performance in introductory physics and calculus
courses, measured by grade as well as a students' declared gender and ethnicity
play a much smaller role relative to the other features included the model.
These results are used to compare traditional statistical analysis to a more
modern modeling approach.Comment: submitted to Physical Review Physics Education Researc
Learning from physics education research: Lessons for economics education
We believe that economists have much to learn from educational research practices and related pedagogical innovations in other disciplines, in particular physics education. In this paper we identify three key features of physics education research that distinguish it from economics education research - (1) the intentional grounding of physics education research in learning science principles, (2) a shared conceptual research framework focused on how students learn physics concepts, and (3) a cumulative process of knowledge-building in the discipline - and describe their influence on new teaching pedagogies, instructional activities, and curricular design in physics education. In addition, we highlight four specific examples of successful pedagogical innovations drawn from physics education - context-rich problems, concept tests, just-in-time teaching, and interactive lecture demonstrations - and illustrate how these practices can be adapted for economic education.economic education; physics education research (PER); research-based teaching; preconceptions; metacognition; transfer; context-rich problems; peer instruction; just-in-time teaching; interactive lecture demonstration
- …
