409,402 research outputs found
A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead
Physical layer security which safeguards data confidentiality based on the
information-theoretic approaches has received significant research interest
recently. The key idea behind physical layer security is to utilize the
intrinsic randomness of the transmission channel to guarantee the security in
physical layer. The evolution towards 5G wireless communications poses new
challenges for physical layer security research. This paper provides a latest
survey of the physical layer security research on various promising 5G
technologies, including physical layer security coding, massive multiple-input
multiple-output, millimeter wave communications, heterogeneous networks,
non-orthogonal multiple access, full duplex technology, etc. Technical
challenges which remain unresolved at the time of writing are summarized and
the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
Techniques for Enhanced Physical-Layer Security
Information-theoretic security--widely accepted as the strictest notion of
security--relies on channel coding techniques that exploit the inherent
randomness of propagation channels to strengthen the security of communications
systems. Within this paradigm, we explore strategies to improve secure
connectivity in a wireless network. We first consider the intrinsically secure
communications graph (iS-graph), a convenient representation of the links that
can be established with information-theoretic security on a large-scale
network. We then propose and characterize two techniques--sectorized
transmission and eavesdropper neutralization--which are shown to dramatically
enhance the connectivity of the iS-graph.Comment: Pre-print, IEEE Global Telecommunications Conference (GLOBECOM'10),
Miami, FL, Dec. 201
Efficient Wireless Security Through Jamming, Coding and Routing
There is a rich recent literature on how to assist secure communication
between a single transmitter and receiver at the physical layer of wireless
networks through techniques such as cooperative jamming. In this paper, we
consider how these single-hop physical layer security techniques can be
extended to multi-hop wireless networks and show how to augment physical layer
security techniques with higher layer network mechanisms such as coding and
routing. Specifically, we consider the secure minimum energy routing problem,
in which the objective is to compute a minimum energy path between two network
nodes subject to constraints on the end-to-end communication secrecy and
goodput over the path. This problem is formulated as a constrained optimization
of transmission power and link selection, which is proved to be NP-hard.
Nevertheless, we show that efficient algorithms exist to compute both exact and
approximate solutions for the problem. In particular, we develop an exact
solution of pseudo-polynomial complexity, as well as an epsilon-optimal
approximation of polynomial complexity. Simulation results are also provided to
show the utility of our algorithms and quantify their energy savings compared
to a combination of (standard) security-agnostic minimum energy routing and
physical layer security. In the simulated scenarios, we observe that, by
jointly optimizing link selection at the network layer and cooperative jamming
at the physical layer, our algorithms reduce the network energy consumption by
half
Physical-Layer Security over Correlated Erasure Channels
We explore the additional security obtained by noise at the physical layer in
a wiretap channel model setting. Security enhancements at the physical layer
have been proposed recently using a secrecy metric based on the degrees of
freedom that an attacker has with respect to the sent ciphertext. Prior work
focused on cases in which the wiretap channel could be modeled as statistically
independent packet erasure channels for the legitimate receiver and an
eavesdropper. In this paper, we go beyond the state-of-the-art by addressing
correlated erasure events across the two communication channels. The resulting
security enhancement is presented as a function of the correlation coefficient
and the erasure probabilities for both channels. It is shown that security
improvements are achievable by means of judicious physical-layer design even
when the eavesdropper has a better channel than the legitimate receiver. The
only case in which this assertion may not hold is when erasures are highly
correlated across channels. However, we are able to prove that correlation
cannot nullify the expected security enhancement if the channel quality of the
legitimate receiver is strictly better than that of the eavesdropper.Comment: 5 pages, 4 figures, submitted to ISIT 201
- …
