3,910 research outputs found
‘Retournement’ of the aedeagus in Curculionidae (Coleoptera, Curculionoidea)
Retournement or turning of the aedeagus about its longitudinal axis through about 180o during development is known in Chrysomeloidea (Coleoptera). This change in the orientation of the organ may be observed during the postembryonic development. This change produces certain morphological effects. By observing these morphological features in the imago the retournement may be inferred. Such morphological features in Curculionidae (Coleoptera) are here recorded. From this it has been inferred not only that retournement of the aedeagus is included in the ontogeny of curculionids, but also that the change of orientation of the organ occurs by the same mechanism as in Chrysomeloidea. These inferences attest the notion of a close phyletic relationship between the superfamilies Curculionoidea and Chrysomeloidea
Trade-offs drive resource specialization and the gradual establishment of ecotypes
Speciation is driven by many different factors. Among those are trade-offs
between different ways an organism utilizes resources, and these trade-offs can
constrain the manner in which selection can optimize traits. Limited migration
among allopatric populations and species interactions can also drive
speciation, but here we ask if trade-offs alone are sufficient to drive
speciation in the absence of other factors. We present a model to study the
effects of trade-offs on specialization and adaptive radiation in asexual
organisms based solely on competition for limiting resources, where trade-offs
are stronger the greater an organism's ability to utilize resources. In this
model resources are perfectly substitutable, and fitness is derived from the
consumption of these resources. The model contains no spatial parameters, and
is therefore strictly sympatric. We quantify the degree of specialization by
the number of ecotypes formed and the niche breadth of the population, and
observe that these are sensitive to resource influx and trade-offs. Resource
influx has a strong effect on the degree of specialization, with a clear
transition between minimal diversification at high influx and multiple species
evolving at low resource influx. At low resource influx the degree of
specialization further depends on the strength of the trade-offs, with more
ecotypes evolving the stronger trade-offs are. The specialized organisms
persist through negative frequency-dependent selection. In addition, by
analyzing one of the evolutionary radiations in greater detail we demonstrate
that a single mutation alone is not enough to establish a new ecotype, even
though phylogenetic reconstruction identifies that mutation as the branching
point. Instead, it takes a series of additional mutations to ensure the stable
coexistence of the new ecotype in the background of the existing ones,
reminiscent of a recent observaComment: 19 pages, 3 figure
Dynamics of clade diversification on the morphological hypercube
Understanding the relationship between taxonomic and morphological changes is
important in identifying the reasons for accelerated morphological
diversification early in the history of animal phyla. Here, a simple general
model describing the joint dynamics of taxonomic diversity and morphological
disparity is presented and applied to the data on the diversification of
blastozoans. I show that the observed patterns of deceleration in clade
diversification can be explicable in terms of the geometric structure of the
morphospace and the effects of extinction and speciation on morphological
disparity without invoking major declines in the size of morphological
transitions or taxonomic turnover rates. The model allows testing of hypotheses
about patterns of diversification and estimation of rates of morphological
evolution. In the case of blastozoans, I find no evidence that major changes in
evolutionary rates and mechanisms are responsible for the deceleration of
morphological diversification seen during the period of this clade's expansion.
At the same time, there is evidence for a moderate decline in overall rates of
morphological diversification concordant with a major change (from positive to
negative values) in the clade's growth rate.Comment: 8 pages, Latex, 2 postscript figures, submitted to Proc.R.Soc.Lond.
Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)
Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa– Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous– Palaeogene or the Eocene–Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.Fil: Ferreira, Gabriel S.. Universidade de Sao Paulo; Brasil. Senckenberg Centre For Human Evolution And Palaeoenvironment; Alemania. Universität Tübingen; AlemaniaFil: Bronzati Filho, Mario. Bayerische Staatssammlung für Paläontologie und Geologie; AlemaniaFil: Langer, Max C.. Universidade de Sao Paulo; BrasilFil: Sterli, Juliana. Museo Paleontológico Egidio Feruglio; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Phytophthora megakarya and Phytophthora palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms
Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) are closely related species causing cacao black pod rot. Although Ppal is a cosmopolitan pathogen, cacao is the only known host of economic importance for Pmeg. Pmeg is more virulent on cacao than Ppal. We sequenced and compared the Pmeg and Ppal genomes and identified virulence-related putative gene models (PGeneM) that may be responsible for their differences in host specificities and virulence. Pmeg and Ppal have estimated genome sizes of 126.88 and 151.23 Mb and PGeneM numbers of 42,036 and 44,327, respectively. The evolutionary histories of Pmeg and Ppal appear quite different. Postspeciation, Ppal underwent whole-genome duplication whereas Pmeg has undergone selective increases in PGeneM numbers, likely through accelerated transposable element-driven duplications. Many PGeneMs in both species failed to match transcripts and may represent pseudogenes or cryptic genetic reservoirs. Pmeg appears to have amplified specific gene families, some of which are virulence-related. Analysis of mycelium, zoospore, and in planta transcriptome expression profiles using neural network self-organizing map analysis generated 24 multivariate and nonlinear self-organizing map classes. Many members of the RxLR, necrosis-inducing phytophthora protein, and pectinase genes families were specifically induced in planta. Pmeg displays a diverse virulence-related gene complement similar in size to and potentially of greater diversity than Ppal but it remains likely that the specific functions of the genes determine each species' unique characteristics as pathogens. (Résumé d'auteur
Phylogeography and population genetics of the European mudminnow (Umbra krameri) with a time-calibrated phylogeny for the family Umbridae
A phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and related genera based on the chloroplast gene ndhF
The genus Setaria is the largest genus in the so-called bristle clade, a monophyletic group of panicoid grasses distinguished by the presence of sterile branches, or bristles, in their inflorescences. The clade includes both foxtail millet and pearl millet, the latter an important cereal crop in dry parts of the world. Other members of the clade are weeds that are widespread agricultural pests. Previous molecular phylogenetic studies have suggested that Setaria might not be monophyletic but did not have a large enough sample of species to test this rigorously. In addition, taxonomic studies have suggested a close relationship between Setaria and Paspalidium, with some authors combining them into a single genus, but molecular studies included too few Paspalidium accessions for a meaningful conclusion. Accordingly, we have produced 77 new sequences of the chloroplast gene ndhF for 52 species not in previous analyses. These were added to available sequences for 35 species in 10 genera of the bristle clade and four outgroup taxa. We find that Setaria species fall into several moderately to strongly supported clades that correlate with geography but not with the existing subgeneric classification. Relationships among these clades and among other genera within the bristle clade are unclear. Constraint experiments using the approximately unbiased test reject the monophyly of Pennisetum, Setaria, and Setaria plus Paspalidium, as well as several other groupings, although the test may be overly sensitive and prone to Type I error. The more conservative Shimodaira-Hasegawa test fails to reject monophyly of any of the tested clades.Fil: Kellogg, Elizabeth Anne. University of Missouri; Estados UnidosFil: Aliscioni, Sandra Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Botánica Agrícola; ArgentinaFil: Morrone, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Pensiero, Jose Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Ciencias Agrarias; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentin
Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics.
BackgroundAnimal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution.ResultsWe estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression.ConclusionsQuantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity
- …
