22,637 research outputs found

    Photodegradation of nimodipine and felodipine in microheterogeneous systems

    Get PDF
    Indexación: Web of Science; ScieloThe photochemical behavior of nimodipine (NIMO) and felodipine (FELO), photolabile drugs widely used as antihypertensive calcium channel blockers, is studied in constrained media. Specifically, we are interested in the kinetic analysis of 4-aryl-1,4-dihydropyridine photodegradation processes when they are incorporated in biological-mimicking systems like micelles or liposomes. In order to establish if the nature of the head of surfactant (ionic or nonionic) could be important modulating the photo-reactivity of these drugs, we studied the photodegradation of NIMO and FELO incorporated in micelles formed with sodium dodecyl sulfate (SDS, anionic), dodecyl-pyridinium chloride (DPC, cationic) and mono lauryl sucrose ester (MLS, nonionic) as surfactants. Additionally, the results of the photodegradation of these compounds in liposomes were also included. The results clearly indicate that both dihydropyridines studied, NIMO and FELO, are located near to the interface, but the surface charge of micelles does not affect neither, the photodegradation rate constant nor the photodegradation products profile. The absence of singlet oxygen generation in micellar media is consistent with the proposition of these 4-aryl-1,4-dihidropyridines located near to the interface of the micelle, where a polar environment is sensed. In addition, the ethanol preferential location on membranes and dihydropyridine enhanced photodegradation by alcohol presence are interesting results to consider in future research.http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072012000300025&nrm=is

    Characterizing the removal of antibiotics in algal wastewater treatment ponds : a case study on tetracycline in HRAPs: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Environmental Engineering at Massey University, Turitea Campus, Palmerston, New Zealand

    Get PDF
    Antibiotics are ubiquitous pollutants in wastewater, owing to their usefulness in both animal and human treatment. Antibiotic pollution is a growing concern because of the risk of encouraging antibiotic resistance in wastewater treatment (WWT) systems and downstream of effluent discharge. The aim of this thesis was to investigate the fate of antibiotics in algal WWT ponds, which have unique ecological and environmental characteristics (e.g. presence of algae; diurnal variation in pH, dissolved oxygen, and temperature) compared with conventional biological WWT. The research in this thesis focused on a case study of the fate of tetracycline (TET, an antibiotic) in high rate algal ponds (HRAP). Indoor lab scale HRAP studies were used to investigate the fate of TET under several operating conditions. Outdoor pilot scale studies (900 L and 180 L HRAPs) under Oceanic and Mediterranean climates were used to validate the lab scale findings. Results showed that high removal (85% to >98%) of TET was possible in the lab and pilot scale HRAPs with HRTs of 4 and 7 days. Sorption was consistently a low contributor (3-10% removal by sorption) during continuous HRAP studies, based on the amount of TET extracted from biomass. Batch experimentation was used to further distinguish mechanisms of TET removal. The majority of TET removal was caused by photodegradation. Indirect photodegradation of TET was dominant over direct photolysis, with 3-7 times higher photodegradation observed in wastewater effluent than for photodegradation in purified water during batch tests incubated in sunlight. Under dark conditions sorption was the dominant removal mechanism, and biodegradation was negligible in batch tests since aqueous TET removed was recovered (± 10%) by extraction of sorbed TET from the biomass. Irreversible abiotic hydrolysis was not observed during TET removal batch tests in purified (MQ) water. A kinetic model was developed and used to predict TET removal in the pilot HRAPs, based on parameters derived from batch experiments. The model predictions for aqueous TET concentrations were successfully validated against initial TET pulse tests in the 180 L pilot scale HRAP. However TET removal decreased in subsequent pulse tests in the pilot HRAP, resulting in over-prediction of TET removal by the kinetic model. This decrease in TET removal was associated with decrease in pH, dissolved oxygen concentrations, and biomass settleability, but causal relationships between TET removal and these variables could not be quantified. Until the predictive kinetic model is developed further, this model may serve as a preliminary estimate of TET fate in algal WWT ponds of different design and operation. Future research should also investigate the potential formation and toxicity (including antibiotic efficiency) of TET degradation products, but this was outside the scope of this thesis. Predictions from the model were sensitive to the daily light intensity, suggesting that TET removal would be reduced in the winter months

    A combined photolytic–electrolytic system for the simultaneous recovery of copper and degradation of phenol or 4-chlorophenol in mixed solutions

    Get PDF
    The effects of the presence of copper on the photooxidation of phenol and 4-chlorophenol and of the presence of the phenols on the recovery of copper by electrodeposition are studied in three systems: a photolytic cell in the presence and absence of TiO2 as a catalyst or H2O2 as an oxidant; an electrolytic cell and a combined photolytic – electrolytic system. The optimum system for the simultaneous removal of copper and destruction of the phenols which overcomes the effects of copper-phenol reactions is a combined system with concentrator electrode technology incorporated into the electrolytic cell. This combined system achieves > 99% removal of copper and destruction of phenol or 4-chlorophenol in an 8 h period.EPSRC/Environmental Technology Best Practice Programme (ETBPP) and Fluid Dynamic International Ltd. for a grant under the Link (WMR03) programme

    Synthesis of titanate nanofibers co-sensitized with ZnS and Bi2S3 nanocrystallites and their application on pollutants removal

    Full text link
    The synthesis of nanocomposite materials combining titanate nanofibers (TNF) with nanocrystalline ZnS and Bi2S3 semiconductors is described in this work. The TNF were produced via hydrothermal synthesis and sensitized with the semiconductor nanoparticles, through a single-source precursor decomposition method. ZnS and Bi2S3 nanoparticles were successfully grown onto the TNF's surface and Bi2S3-ZnS/TNF nanocomposite materials with different layouts were obtained using either a layer-by-layer or a co-sensitization approach. The samples' photocatalytic performance was first evaluated through the production of the hydroxyl radical using terephthalic acid as probe molecule. All the tested samples show photocatalytic ability for the production of this oxidizing species. Afterwards, the samples were investigated for the removal of methylene blue. The nanocomposite materials with best adsorption ability for the organic dye were the ZnS/TNF and Bi2S3ZnS/TNF. The removal of the methylene blue was systematically studied, and the most promising results were obtained considering a sequential combination of an adsorption-photocatalytic degradation process using the Bi2S3ZnS/TNF powder as a highly adsorbent and photocatalyst material.Comment: 26 pages, 10 figure

    A mechanistic study on the phototoxicity of atorvastatin: singlet oxygen generation by a phenanthrene-like photoproduct

    Get PDF
    Atorvastatin calcium (ATV) is one of the most frequently prescribed drugs worldwide. Among the adverse effects observed for this lipid-lowering agent, clinical cases of cutaneous adverse reactions have been reported and associated with photosensitivity disorders. Previous work dealing with ATV photochemistry has shown that exposure to natural sunlight in aqueous solution leads to photoproducts resulting from oxidation of the pyrrole ring and from cyclization to a phenanthrene derivative. Laser flash photolysis of ATV, at both 266 and 308 nm, led to a transient spectrum with two maxima at λ ) 360 and λ ) 580 nm (τ ) 41 μs), which was assigned to the primary intermediate of the stilbene-like photocyclization. On the basis of the absence of a triplet-triplet absorption, the role of the parent drug as singlet oxygen photosensitizer can be discarded. By contrast, a stable phenanthrene-like photoproduct would be a good candidate to play this role. Laser flash photolysis of this compound showed a triplet-triplet transient absorption at λmax ) 460 nm with a lifetime of 26 μs, which was efficiently quenched by oxygen (kq ) 3 ((0.2) × 109 M-1 s-1). Its potential to photosensitize formation of singlet oxygen was confirmed by spin trapping experiments, through conversion of TEMP to the stable free radical TEMPO. The photoreactivity of the phenanthrene-like photoproduct was investigated using Trp as a marker. The disappearance of the amino acid fluorescence (λmax ) 340 nm) after increasing irradiation times at 355 nm was taken as a measurement of photodynamic oxidation. To confirm the involvement of a type II mechanism, the same experiment was also performed in D2O; this resulted in a significant enhancement of the reaction rate. On the basis of the obtained photophysical and photochemical results, the phototoxicity of atorvastatin can be attributed to singlet oxygen formation with the phenanthrene-like photoproduct as a photosensitizer

    Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties

    Full text link
    This paper reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160^{\circ}C and 24 h. A band gap of 3.06\pm0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 minutes of irradiation of a 10 ppm dye aqueous solution and 1 g/L of TNS catalyst.Comment: 29 pages, 10 figures, accepted for publication in Journal of Materials Scienc
    corecore