51,269 research outputs found
Electronic and phononic states of the Holstein-Hubbard dimer of variable length
We consider a model Hamiltonian for a dimer including all the electronic one-
and two-body terms consistent with a single orbital per site, a free Einstein
phonon term, and an electron-phonon coupling of the Holstein type. The bare
electronic interaction parameters were evaluated in terms of Wannier functions
built from Gaussian atomic orbitals. An effective polaronic Hamiltonian was
obtained by an unrestricted displaced-oscillator transformation, followed by
evaluation of the phononic terms over a squeezed-phonon variational wave
function. For the cases of quarter-filled and half-filled orbital, and over a
range of dimer length values, the ground state was identified by simultaneously
and independently optimizing the orbital shape, the phonon displacement and the
squeezing effect strength. As the dimer length varies, we generally find
discontinuous changes of both electronic and phononic states, accompanied by an
appreciable renormalization of the effective electronic interactions across the
transitions, due to the equilibrium shape of the wave functions strongly
depending on the phononic regime and on the type of ground state.Comment: 11 pages, RevTeX, 10 PostScript figures; to appear in Phys. Rev.
Comparison of perturbative expansions using different phonon bases for two-site Holstein model
The two-site single-polaron problem is studied within the perturbative
expansions using different standard phonon basis obtained through the Lang
Firsov (LF), modified LF (MLF) and modified LF transformation with squeezed
phonon states (MLFS). The role of these convergent expansions using the above
prescriptions in lowering the energy and in determining the correlation
functions are compared for different values of coupling strength. The
single-electron energy, oscillator wave functions and correlation functions are
calculated for the same system. The applicability of different phonon basis in
different regimes of the coupling strength as well as in different regimes of
hopping are also discussed.Comment: 24 pages (RevTEX), 12 postscript figures, final version accepted in
PRB(2000) Jornal Ref: Phys. Rev. B, 61, 4592-4602 (2000
Effects of phonon-phonon coupling on low-lying states in neutron-rich Sn isotopes
Starting from an effective Skyrme interaction we present a method to take
into account the coupling between one- and two-phonon terms in the wave
functions of excited states. The approach is a development of a finite rank
separable approximation for the quasiparticle RPA calculations proposed in our
previous work. The influence of the phonon-phonon coupling on energies and
transition probabilities for the low-lying quadrupole and octupole states in
the neutron-rich Sn isotopes is studied.Comment: 18 page
Multimode Phonon Cooling via Three Wave Parametric Interactions with Optical Fields
We discuss the possible cooling of different phonon modes via three wave
mixing interactions of vibrational and optical modes. Since phonon modes
exhibit a variety of dispersion relations or frequency spectra with diverse
spatial structures, depending on the shape and size of the sample, we formulate
our theory in terms of relevant spatial mode functions for the interacting
fields in any given geometry. We discuss the possibility of Dicke like
collective effects in phonon cooling and present explicit results for
simultaneous cooling of two phonon modes via the anti-Stokes up conversions. We
show that the bimodal cooling should be observable experimentally
Decoherence and relaxation in the interacting quantum dot system
In this paper we study the low temperature kinetics of the electrons in the
system composed of a quantum dot connected to two leads by solving the equation
of motion. The decoherence and the relaxation of the system caused by the gate
voltage noise and electron-phonon scattering are investigated. In order to take
account of the strong correlation of the electrons in this system, the
quasi-exact wave functions are calculated using an improved matrix product
states algorithm. This algorithm enables us to calculate the wave functions of
the ground state and the low lying excited states with satisfied accuracy and
thus enables us to study the kinetics of the system more effectively. It is
found that although both of these two mechanisms are proportional to the
electron number operator in the dot, the kinetics are quite different. The
noise induced decoherence is much more effective than the energy relaxation,
while the energy relaxation and decoherence time are of the same order for the
electron-phonon scattering. Moreover, the noise induced decoherence increases
with the lowering of the dot level, but the relaxation and decoherence due to
the electron-phonon scattering decrease.Comment: Minor revision. Add journal referenc
Pressure-dependence of electron-phonon coupling and the superconducting phase in hcp Fe - a linear response study
A recent experiment by Shimizu et al. has provided evidence of a
superconducting phase in hcp Fe under pressure. To study the
pressure-dependence of this superconducting phase we have calculated the phonon
frequencies and the electron-phonon coupling in hcp Fe as a function of the
lattice parameter, using the linear response (LR) scheme and the full potential
linear muffin-tin orbital (FP-LMTO) method. Calculated phonon spectra and the
Eliashberg functions indicate that conventional s-wave
electron-phonon coupling can definitely account for the appearance of the
superconducting phase in hcp Fe. However, the observed change in the transition
temperature with increasing pressure is far too rapid compared with the
calculated results. For comparison with the linear response results, we have
computed the electron-phonon coupling also by using the rigid muffin-tin (RMT)
approximation. From both the LR and the RMT results it appears that
electron-phonon interaction alone cannot explain the small range of volume over
which superconductivity is observed. It is shown that
ferromagnetic/antiferromagnetic spin fluctuations as well as scattering from
magnetic impurities (spin-ordered clusters) can account for the observed values
of the transition temperatures but cannot substantially improve the agreeemnt
between the calculated and observed presure/volume range of the superconducting
phase. A simplified treatment of p-wave pairing leads to extremely small ( K) transition temperatures. Thus our calculations seem to rule out
both - and - wave superconductivity in hcp Fe.Comment: 12 pages, submitted to PR
Coupling of phonons and spin waves in triangular antiferromagnet
We investigate the influence of the spin-phonon coupling in the triangular
antiferromagnet where the coupling is of the exchange-striction type. The
magnon dispersion is shown to be modified significantly at wave vector (2pi,0)
and its symmetry-related points, exhibiting a roton-like minimum and an
eventual instability in the dispersion. Various correlation functions such as
equal-time phonon correlation, spin-spin correlation, and local magnetization
are calculated in the presence of the coupling.Comment: 6 pages, 5 figures; references added, minor text revisions, submitted
to PR
- …