2,722,021 research outputs found
Lattice model of gas condensation within nanopores
We explore the thermodynamic behavior of gases adsorbed within a nanopore.
The theoretical description employs a simple lattice gas model, with two
species of site, expected to describe various regimes of adsorption and
condensation behavior. The model includes four hypothetical phases: a
cylindrical shell phase (S), in which the sites close to the cylindrical wall
are occupied, an axial phase (A), in which sites along the cylinder's axis are
occupied, a full phase (F), in which all sites are occupied, and an empty phase
(E). We obtain exact results at T=0 for the phase behavior, which is a function
of the interactions present in any specific problem. We obtain the
corresponding results at finite T from mean field theory. Finally, we examine
the model's predicted phase behavior of some real gases adsorbed in nanopores
Simple Fluids with Complex Phase Behavior
We find that a system of particles interacting through a simple isotropic
potential with a softened core is able to exhibit a rich phase behavior
including: a liquid-liquid phase transition in the supercooled phase, as has
been suggested for water; a gas-liquid-liquid triple point; a freezing line
with anomalous reentrant behavior. The essential ingredient leading to these
features resides in that the potential investigated gives origin to two
effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur
Dynamical Quantum Phase Transitions in the Transverse Field Ising Model
A phase transition indicates a sudden change in the properties of a large
system. For temperature-driven phase transitions this is related to
non-analytic behavior of the free energy density at the critical temperature:
The knowledge of the free energy density in one phase is insufficient to
predict the properties of the other phase. In this paper we show that a close
analogue of this behavior can occur in the real time evolution of quantum
systems, namely non-analytic behavior at a critical time. We denote such
behavior a dynamical phase transition and explore its properties in the
transverse field Ising model. Specifically, we show that the equilibrium
quantum phase transition and the dynamical phase transition in this model are
intimately related.Comment: 4+4 pages, 4 figures, Appendix adde
Phase Behavior of Columnar DNA Assemblies
The pair interaction between two stiff parallel linear DNA molecules depends
not only on the distance between their axes but on their azimuthal orientation.
The positional and orientational order in columnar B-DNA assemblies in solution
is investigated, based on the DNA-DNA electrostatic pair potential that takes
into account DNA helical symmetry and the amount and distribution of adsorbed
counterions. A phase diagram obtained by lattice sum calculations predicts a
variety of positionally and azimuthally ordered phases and bundling transitions
strongly depending on the counterion adsorption patterns.Comment: 4 pages, 3 figures, submitted to PR
App-based feedback on safety to novice drivers: learning and monetary incentives
An over-proportionally large number of car crashes is caused by novice drivers. In a field experiment, we investigated whether and how car drivers who had recently obtained their driving license reacted to app-based feedback on their safety-relevant driving behavior (speeding, phone usage, cornering, acceleration and braking). Participants went through a pre-measurement phase during which they did not receive app-based feedback but driving behavior was recorded, a treatment phase during which they received app-based feedback, and a post-measurement phase during which they did not receive app-based feedback but driving behavior was recorded. Before the start of the treatment phase, we randomly assigned participants to two possible treatment groups. In addition to receiving app-based feedback, the participants of one group received monetary incentives to improve their safety-relevant driving behavior, while the participants of the other group did not. At the beginning and at the end of experiment, each participant had to fill out a questionnaire to elicit socio-economic and attitudinal information.
We conducted regression analyses to identify socio-economic, attitudinal, and driving-behavior-related variables that explain safety-relevant driving behavior during the pre-measurement phase and the self-chosen intensity of app usage during the treatment phase. For the main objective of our study, we applied regression analyses to identify those variables that explain the potential effect of providing app-based feedback during the treatment phase on safety-relevant driving behavior. Last, we applied statistical tests of differences to identify self-selection and attrition biases in our field experiment.
For a sample of 130 novice Austrian drivers, we found moderate improvements in safety-relevant driving skills due to app-based feedback. The improvements were more pronounced under the treatment with monetary incentives, and for participants choosing higher feedback intensities. Moreover, drivers who drove relatively safer before receiving app-based feedback used the app more intensely and, ceteris paribus, higher app use intensity led to improvements in safety-related driving skills. Last, we provide empirical evidence for both self-selection and attrition biases
Universal behavior at discontinuous quantum phase transitions
Discontinuous quantum phase transitions besides their general interest are
clearly relevant to the study of heavy fermions and magnetic transition metal
compounds. Recent results show that in many systems belonging to these classes
of materials, the magnetic transition changes from second order to first order
as they approach the quantum critical point (QCP). We investigate here some
mechanisms that may be responsible for this change. Specifically the coupling
of the order parameter to soft modes and the competition between different
types of order near the QCP. For weak first order quantum phase transitions
general results are obtained. In particular we describe the thermodynamic
behavior at this transition when it is approached from finite temperatures.
This is the discontinuous equivalent of the non-Fermi liquid trajectory close
to a conventional QCP in a heavy fermion material.Comment: 7 pages, 3 figure
- …
