160,778 research outputs found
Quantum Monte Carlo study of static potential in graphene
In this paper the interaction potential between static charges in suspended
graphene is studied within the quantum Monte Carlo approach. We calculated the
dielectric permittivity of suspended graphene for the set of temperatures and
extrapolated our results to zero temperature. The dielectric permittivity at
zero temperature has the following properties. At zero distance
. Then it rises and at a large distance the dielectric
permittivity reaches the plateau . The results
obtained in this paper allow to draw a conclusion that full account of
many-body effects in the dielectric permittivity of suspended graphene gives
very close to the one-loop results. Contrary to the one-loop result,
the two-loop prediction for the dielectric permittivity deviates from our
result. So, one can expect large higher order corrections to the two-loop
prediction for the dielectric permittivity of suspended graphene.Comment: 6 pages, 2 figure
Transmission Studies of Left-handed Materials
Left-handed materials are studied numerically using an improved version of
the transfer-matrix method. The transmission, reflection, the phase of the
reflection and the absorption are calculated and compared with experiments for
both single split-ring resonators (SRR) with negative permeability and
left-handed materials (LHMs) which have both the permittivity and permeability
negative. Our results suggest ways of positively identifying materials that
have both permittivity and permeability negative, from materials that have
either permeability or permittivity negative
Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients
We analyze the reflection and transmission coefficients calculated from
transfer matrix simulations on finite lenghts of electromagnetic metamaterials,
to determine the effective permittivity and permeability. We perform this
analysis on structures composed of periodic arrangements of wires, split ring
resonators (SRRs) and both wires and SRRs. We find the recovered
frequency-dependent permittivity and permeability are entirely consistent with
analytic expressions predicted by effective medium arguments. Of particular
relevance are that a wire medium exhibits a frequency region in which the real
part of permittivity is negative, and SRRs produce a frequency region in which
the real part of permeability is negative. In the combination structure, at
frequencies where both the recovered real part of permittivity and permeability
are simultaneously negative, the real part of the index-of-refraction is found
also to be unambigously negative.Comment: *.pdf file, 5 figure
Spectral theory of electromagnetic scattering by a coated sphere
In this paper, we introduce an alternative representation of the
electromagnetic field scattered from a homogeneous sphere coated with a
homogeneous layer of uniform thickness. Specifically, we expand the scattered
field using a set of modes that are independent of the permittivity of the
coating, while the expansion coefficients are simple rational functions of the
permittivity. The theory we develop represents both a framework for the
analysis of plasmonic and photonic modes and a straightforward methodology to
design the permittivity of the coating to pursue a prescribed tailoring of the
scattered field. To illustrate the practical implications of this method, we
design the permittivity of the coating to zero either the backscattering or a
prescribed multipolar order of the scattered field, and to maximize an electric
field component in a given point of space
CaCu3Ti4O12 ceramics from co-precipitation method: Dielectric properties of pellets and thick films
Dielectric properties of CaCu3Ti4O12 (CCTO)-based ceramics and thick films (e ∼50m) prepared from powders synthesized by a soft chemistry method (co-precipitation) are presented and discussed. The characteristics of pellets and thick films are compared. The pellets exhibit high values of the dielectric permittivity (εr ∼1.4×105) and relatively small dielectric losses (tan δ ∼0.16) at 1 kHz and room temperature. These properties are independent of the nature of the metallization of the electrodes. In addition, the dielectric permittivity decreases when the diameter of the electrodes of the pellets increases, while the losses remain constant. This result, which is strongly related to the nature of the dielectric material in between the electrodes, constitutes a strong indication that the high dielectric permittivity values observed in this material are not related to an interfacial (electrode material) related mechanism but is an internal barrier layer capacitor (IBLC) type. Very high values of the dielectric permittivity of CCTO thick films are measured (εr ∼5×104). The differences in dielectric permittivity between thick films and dense pellets may be attributed to the difference in grain size due to different CuO contents, and to the different reactivity of the materials
Dielectric and polarization experiments in high loss dielectrics: a word of caution
The recent quest for improved functional materials like high permittivity
dielectrics and/or multiferroics has triggered an intense wave of research.
Many materials have been checked for their dielectric permittivity or their
polarization state. In this report, we call for caution when samples are
simultaneously displaying insulating behavior and defect-related conductivity.
Many oxides containing mixed valent cations or oxygen vacancies fall in this
category. In such cases, most of standard experiments may result in effective
high dielectric permittivity which cannot be related to ferroelectric
polarization. Here we list few examples of possible discrepancies between
measured parameters and their expected microscopic origin
The Role of Probe Attenuation in the Time-Domain Reflectometry Characterization of Dielectrics
The influence of the measurement setup on the estimation of dielectric permittivity spectra from time-domain reflectometry (TDR) responses is investigated. The analysis is based on a simplified model of the TDR measurement setup, where an ideal voltage step is applied to an ideal transmission line that models the probe. The main result of this analysis is that the propagation in the probe has an inherent band limiting effect, and the estimation of the high-frequency permittivity parameters is well conditioned only if the wave attenuation for a round trip propagation in the dielectric sample is small. This is a general result, holding for most permittivity model and estimation scheme. It has been verified on real estimation problems by estimating the permittivity of liquid dielectrics and soil samples via an high-order model of the TDR setup and a parametric inversion approac
- …
