97,159 research outputs found

    Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by Dip Pen Nanolithography

    Full text link
    We report on DNA arrays produced by Dip Pen Nanolithography (DPN) on a novel Au-Ag micro patterned template stripped surface. DNA arrays have been investigated by atomic force microscopy (AFM) and scanning tunnelling microscopy (STM) showing that the patterned template stripped substrate enables easy retrieval of the DPN-functionalized zone with a standard optical microscope permitting a multi-instrument and multi-technique local detection and analysis. Moreover the smooth surface of the Au squares (abput 5-10 angstrom roughness) allows to be sensitive to the hybridization of the oligonucleotide array with label-free target DNA. Our Au-Ag substrates, combining the retrieving capabilities of the patterned surface with the smoothness of the template stripped technique, are candidates for the investigation of DPN nanostructures and for the development of label free detection methods for DNA nanoarrays based on the use of scanning probes.Comment: Langmuir (accepted

    Direct observation of vortices in an array of holes at low temperature: temperature dependance and first visualization of localized superconductivity

    Full text link
    A scanning micro superconducting quantum interference device (microSQUID) microscope is used to directly image vortices in a superconducting Al thin film. We observe the temperature dependence of the vortex distribution in a regular defect (hole) array patterned into the Al film. The first direct observation of the localized superconducting state around the holes is shown as well as the effect of the hole size on nucleation of the superconducting state

    Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single Si(111) substrate

    Get PDF
    Multiple arrays of Si wires were sequentially grown and transferred into a flexible polymer film from a single Si(111) wafer. After growth from a patterned, oxide-coated substrate, the wires were embedded in a polymer and then mechanically separated from the substrate, preserving the array structure in the film. The wire stubs that remained were selectively etched from the Si(111) surface to regenerate the patterned substrate. Then the growth catalyst was electrodeposited into the holes in the patterned oxide. Cycling through this set of steps allowed regrowth and polymer film transfer of several wire arrays from a single Si wafer

    Miniature micromachined quadrupole mass spectrometer array and method of making the same

    Get PDF
    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device

    Method of construction of a multi-cell solar array

    Get PDF
    The method of constructing a high voltage, low power, multicell solar array is described. A solar cell base region is formed in a substrate such as but not limited to silicon or sapphire. A protective coating is applied on the base and a patterned etching of the coating and base forms discrete base regions. A semiconductive junction and upper active region are formed in each base region, and defined by photolithography. Thus, discrete cells which are interconnected by metallic electrodes are formed

    Molecular Sieving in Periodic Free-Energy Landscapes Created by Patterned Nanofilter Arrays

    Get PDF
    We present an experimental study of Ogston-like sieving process of rodlike DNA in patterned periodic nanofluidic filter arrays. The electrophoretic motion of DNA through the array is described as a biased Brownian motion overcoming periodically modulated free-energy landscape. A kinetic model, constructed based on the equilibrium partitioning theory and the Kramers theory, explains the field-dependent mobility well. We further show experimental evidence of the crossover from Ogston-like sieving to entropic trapping, depending on the ratio between nanofilter constriction size and DNA size

    3D Liquid Crystal Display with Single Polarizer and Patterned Retarder Structure

    Get PDF
    We present a three dimensional (3D) Liquid crystal display (LCD) in a stereoscopic type using the single-polarizer LCD and in-cell patterned retarder. To construct 3D images in single-polarizer LCD with the microlens array, the micro-patterned retarder embedded the LCD generates two orthogonal polarizations

    Engineered arrays of NV color centers in diamond based on implantation of CN- molecules through nanoapertures

    Full text link
    We report a versatile method to engineer arrays of nitrogen-vacancy (NV) color centers in dia- mond at the nanoscale. The defects were produced in parallel by ion implantation through 80 nm diameter apertures patterned using electron beam lithography in a PMMA layer deposited on a diamond surface. The implantation was performed with CN- molecules which increased the NV defect formation yield. This method could enable the realization of a solid-state coupled-spin array and could be used for positioning an optically active NV center on a photonic microstructure.Comment: 12 pages, 3 figure

    Writing and reading of single magnetic domain per bit perpendicular patterned media

    Get PDF
    By fabricating patterned media with a large number of nanoscale single domain magnetic particles embedded in a nonmagnetic substrate, and by writing the magnetization for each of these particles in a desired direction, nonvolatile magnetic storage of information could reach densities much higher than what is currently thought possible for longitudinal continuous media. We have fabricated high aspect ratio perpendicular nickel columnar nanoparticles embedded in a hard Al2O3/GaAs substrate. We show that the magnetization states of the individual magnets can be controlled by demonstrating that prototype patterned "single magnetic domain per bit" data tracks can be written and read back using current magnetic information storage technology
    corecore