13,217 research outputs found

    Hierarchical path-finding for Navigation Meshes (HNA*)

    Get PDF
    Path-finding can become an important bottleneck as both the size of the virtual environments and the number of agents navigating them increase. It is important to develop techniques that can be efficiently applied to any environment independently of its abstract representation. In this paper we present a hierarchical NavMesh representation to speed up path-finding. Hierarchical path-finding (HPA*) has been successfully applied to regular grids, but there is a need to extend the benefits of this method to polygonal navigation meshes. As opposed to regular grids, navigation meshes offer representations with higher accuracy regarding the underlying geometry, while containing a smaller number of cells. Therefore, we present a bottom-up method to create a hierarchical representation based on a multilevel k-way partitioning algorithm (MLkP), annotated with sub-paths that can be accessed online by our Hierarchical NavMesh Path-finding algorithm (HNA*). The algorithm benefits from searching in graphs with a much smaller number of cells, thus performing up to 7.7 times faster than traditional A¿ over the initial NavMesh. We present results of HNA* over a variety of scenarios and discuss the benefits of the algorithm together with areas for improvement.Peer ReviewedPostprint (author's final draft

    Lifelong Multi-Agent Path Finding in Large-Scale Warehouses

    Full text link
    Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents to their goal locations without collisions. In this paper, we study the lifelong variant of MAPF, where agents are constantly engaged with new goal locations, such as in large-scale automated warehouses. We propose a new framework Rolling-Horizon Collision Resolution (RHCR) for solving lifelong MAPF by decomposing the problem into a sequence of Windowed MAPF instances, where a Windowed MAPF solver resolves collisions among the paths of the agents only within a bounded time horizon and ignores collisions beyond it. RHCR is particularly well suited to generating pliable plans that adapt to continually arriving new goal locations. We empirically evaluate RHCR with a variety of MAPF solvers and show that it can produce high-quality solutions for up to 1,000 agents (= 38.9\% of the empty cells on the map) for simulated warehouse instances, significantly outperforming existing work.Comment: Published at AAAI 202

    Path finding strategies in scale-free networks

    Full text link
    We numerically investigate the scale-free network model of Barab{\'a}si and Albert [A. L. Barab{\'a}si and R. Albert, Science {\bf 286}, 509 (1999)] through the use of various path finding strategies. In real networks, global network information is not accessible to each vertex, and the actual path connecting two vertices can sometimes be much longer than the shortest one. A generalized diameter depending on the actual path finding strategy is introduced, and a simple strategy, which utilizes only local information on the connectivity, is suggested and shown to yield small-world behavior: the diameter DD of the network increases logarithmically with the network size NN, the same as is found with global strategy. If paths are sought at random, DN0.5D \sim N^{0.5} is found.Comment: 4 pages, final for
    corecore