13,217 research outputs found
Hierarchical path-finding for Navigation Meshes (HNA*)
Path-finding can become an important bottleneck as both the size of the virtual environments and the number of agents navigating them increase. It is important to develop techniques that can be efficiently applied to any environment independently of its abstract representation. In this paper we present a hierarchical NavMesh representation to speed up path-finding. Hierarchical path-finding (HPA*) has been successfully applied to regular grids, but there is a need to extend the benefits of this method to polygonal navigation meshes. As opposed to regular grids, navigation meshes offer representations with higher accuracy regarding the underlying geometry, while containing a smaller number of cells. Therefore, we present a bottom-up method to create a hierarchical representation based on a multilevel k-way partitioning algorithm (MLkP), annotated with sub-paths that can be accessed online by our Hierarchical NavMesh Path-finding algorithm (HNA*). The algorithm benefits from searching in graphs with a much smaller number of cells, thus performing up to 7.7 times faster than traditional A¿ over the initial NavMesh. We present results of HNA* over a variety of scenarios and discuss the benefits of the algorithm together with areas for improvement.Peer ReviewedPostprint (author's final draft
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses
Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents to
their goal locations without collisions. In this paper, we study the lifelong
variant of MAPF, where agents are constantly engaged with new goal locations,
such as in large-scale automated warehouses. We propose a new framework
Rolling-Horizon Collision Resolution (RHCR) for solving lifelong MAPF by
decomposing the problem into a sequence of Windowed MAPF instances, where a
Windowed MAPF solver resolves collisions among the paths of the agents only
within a bounded time horizon and ignores collisions beyond it. RHCR is
particularly well suited to generating pliable plans that adapt to continually
arriving new goal locations. We empirically evaluate RHCR with a variety of
MAPF solvers and show that it can produce high-quality solutions for up to
1,000 agents (= 38.9\% of the empty cells on the map) for simulated warehouse
instances, significantly outperforming existing work.Comment: Published at AAAI 202
Path finding strategies in scale-free networks
We numerically investigate the scale-free network model of Barab{\'a}si and
Albert [A. L. Barab{\'a}si and R. Albert, Science {\bf 286}, 509 (1999)]
through the use of various path finding strategies. In real networks, global
network information is not accessible to each vertex, and the actual path
connecting two vertices can sometimes be much longer than the shortest one. A
generalized diameter depending on the actual path finding strategy is
introduced, and a simple strategy, which utilizes only local information on the
connectivity, is suggested and shown to yield small-world behavior: the
diameter of the network increases logarithmically with the network size
, the same as is found with global strategy. If paths are sought at random,
is found.Comment: 4 pages, final for
- …
