267,177 research outputs found

    Potential inbreeding in a small population of a mass flowering species, Xanthorrhoea johnsonii (Xanthorrhoaceae): is your mother my father?

    Get PDF
    Xanthorrhoea johnsonii is a long lived slow growing perennial understorey species, that produces a large quantity of passively dispersed seed every 3-5 years. Reproductive maturity is not reached until 20-30 years of age. The temporal asynchrony of the flowering event in this population was analogous to geographic isolation through fragmentation. A small population of plants flowering in isolation provided the opportunity to examine outcrossing rates, genetic diversity and the paternity of progeny at a small spatial scale (0.2 ha). The geographic location and physical characteristics of the adult plants were recorded, and both adults and their seed were sampled for genetic analysis. Four microsatellite loci were screened for genetic diversity and spatial structure analysis. A population outcrossing rate was estimated, as well as the number of paternal parents required to resolve the progeny multilocus genotypes. High genetic diversity was found in both adults and progeny with an estimated 97% outcrossing rate. All maternal lines required several paternal contributors, with no evidence of dominant paternal genotypes. Pollen transfer occurred between both geographically close and distant plants

    The long non-coding RNA Kcnq1ot1 controls maternal p57 expression in muscle cells by promoting H3K27me3 accumulation to an intragenic MyoD-binding region

    Get PDF
    BACKGROUND: The cell-cycle inhibitor p57kip2 plays a critical role in mammalian development by coordinating cell proliferation and differentiation in many cell types. p57kip2 expression is finely regulated by several epigenetic mechanisms, including paternal imprinting. Kcnq1ot1, a long non-coding RNA (LncRNA), whose gene maps to the p57Kip2 imprinting domain, is expressed exclusively from the paternal allele and participates in the cis-silencing of the neighboring imprinted genes through chromatin-level regulation. In light of our previous evidence of a functional interaction between myogenic factors and imprinting control elements in the regulation of the maternal p57Kip2 allele during muscle differentiation, we examined the possibility that also Kcnq1ot1 could play an imprinting-independent role in the control of p57Kip2 expression in muscle cells. RESULTS: We found that Kcnq1ot1 depletion by siRNA causes the upregulation of the maternal and functional p57Kip2 allele during differentiation, suggesting a previously undisclosed role for this LncRNA. Consistently, Chromatin Oligo-affinity Precipitation assays showed that Kcnq1ot1 physically interacts not only with the paternal imprinting control region of the locus, as already known, but also with both maternal and paternal alleles of a novel p57Kip2 regulatory region, located intragenically and containing two binding sites for the muscle-specific factor MyoD. Moreover, chromatin immunoprecipitation assays after Kcnq1ot1 depletion demonstrated that the LncRNA is required for the accumulation of H3K27me3, a chromatin modification catalyzed by the histone-methyl-transferase EZH2, at the maternal p57kip2 intragenic region. Finally, upon differentiation, the binding of MyoD to this region and its physical interaction with Kcnq1ot1, analyzed by ChIP and RNA immunoprecipitation assays, correlate with the loss of EZH2 and H3K27me3 from chromatin and with p57Kip2 de-repression. CONCLUSIONS: These findings highlight the existence of an imprinting-independent role of Kcnq1ot1, adding new insights into the biology of a still mysterious LncRNA. Moreover, they expand our knowledge about the molecular mechanisms underlying the tight and fine regulation of p57Kip2 during differentiation and, possibly, its aberrant silencing observed in several pathologic conditions

    An Exploratory Analysis of Father Involvement in Low-Income Families

    Get PDF
    Using data from the Fragile Families study, this paper explores factors that influence paternal involvement in low-income families. 4873 fathers from the Fragile Families study were classified using CART (Classification and Regression Tree Analysis). CART is a nonparametric technique that allows many different factors to be combined in order to classify homogeneous subgroups within a sample. The CART analysis distinguished between residential and non-residential fathers. In addition, among residential fathers, race emerged as the distinguishing factor. For White men, residential status was the only factor to affect involvement. For African American and Hispanic men however, interactions among several sociodemographic characteristics revealed that both contextual and individual factors affect paternal involvement. Results suggest that an ecological approach is necessary in the investigation of paternal involvement.

    New mutations at the imprinted Gnas cluster show gene dosage effects of Gsα in postnatal growth and implicate XLαs in bone and fat metabolism, but not in suckling

    Get PDF
    The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism

    Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during pronuclear development in equine zygotes produced by ICSI

    Get PDF
    Background: Global epigenetic reprogramming is considered to be essential during embryo development to establish totipotency. In the classic model first described in the mouse, the genome-wide DNA demethylation is asymmetric between the paternal and the maternal genome. The paternal genome undergoes ten-eleven translocation (TET)-mediated active DNA demethylation, which is completed before the end of the first cell cycle. Since TET enzymes oxidize 5-methylcytosine to 5-hydroxymethylcytosine, the latter is postulated to be an intermediate stage toward DNA demethylation. The maternal genome, on the other hand, is protected from active demethylation and undergoes replication-dependent DNA demethylation. However, several species do not show the asymmetric DNA demethylation process described in this classic model, since 5-methylcytosine and 5-hydroxymethylcytosine are present during the first cell cycle in both parental genomes. In this study, global changes in the levels of 5-methylcytosine and 5-hydroxymethylcytosine throughout pronuclear development in equine zygotes produced in vitro were assessed using immunofluorescent staining. Results: We were able to show that 5-methylcytosine and 5-hydroxymethylcytosine both were explicitly present throughout pronuclear development, with similar intensity levels in both parental genomes, in equine zygotes produced by ICSI. The localization patterns of 5-methylcytosine and 5-hydroxymethylcytosine, however, were different, with 5-hydroxymethylcytosine homogeneously distributed in the DNA, while 5-methylcytosine tended to be clustered in certain regions. Fluorescence quantification showed increased 5-methylcytosine levels in the maternal genome from PN1 to PN2, while no differences were found in PN3 and PN4. No differences were observed in the paternal genome. Normalized levels of 5-hydroxymethylcytosine were preserved throughout all pronuclear stages in both parental genomes. Conclusions: In conclusion, the horse does not seem to follow the classic model of asymmetric demethylation as no evidence of global DNA demethylation of the paternal pronucleus during the first cell cycle was demonstrated. Instead, both parental genomes displayed sustained and similar levels of methylation and hydroxymethylation throughout pronuclear development

    The Co-occurrence of child and intimate partner maltreatment in the family: characteristics of the violent perpetrators

    Get PDF
    This study considers the characteristics associated with mothers and fathers who maltreat their child and each other in comparison to parents who only maltreat their child. One hundred and sixty-two parents who had allegations of child maltreatment made against them were considered. The sample consisted of 43 fathers (Paternal Family—PF) and 23 mothers (Maternal Family—MF) who perpetrated both partner and child maltreatment, together with 23 fathers (Paternal Child—PC) and 26 mothers (Maternal Child—MC) who perpetrated child maltreatment only. In addition, 2 fathers (Paternal Victim—PV) and 23 mothers (Maternal Victim—MV) were victims of intimate partner maltreatment and perpetrators of child maltreatment and 7 fathers (Paternal Non-abusive Carer—PNC) and 15 mothers (Maternal Non-abusive Carer—MNC) did not maltreat the child but lived with an individual who did. Within their family unit, 40.7% of parents perpetrated both intimate partner and child maltreatment. However, fathers were significantly more likely to maltreat both their partner and child than mothers and mothers were significantly more likely to be victims of intimate partner violence than fathers. PF fathers conducted the highest amount of physical and/or sexual child maltreatment while MC and MV mothers perpetrated the highest amount of child neglect. Few significant differences between mothers were found. PF fathers had significantly more factors associated with development of a criminogenic lifestyle than PC fathers. Marked sex differences were demonstrated with PF fathers demonstrating significantly more antisocial characteristics, less mental health problems and fewer feelings of isolation than MF mothers. MC mothers had significantly more childhood abuse, mental health problems, parenting risk factors and were significantly more likely to be biologically related to the child than PC fathers. This study suggests that violent families should be assessed and treated in a holistic manner, considering the effects of partner violence upon all family members, rather than exclusively intervening with the violent man

    Impact of Paternal Temporary Absence on Children Left Behind

    Get PDF
    Using the first two waves of the Vietnam Living Standards Survey, we investigate how a father’s temporary absence affects children left behind in terms of their school attendance, household expenditures on education, and nonhousework labour supply in the 1990s. The estimating subsample is children aged 7-18 in households in which both parents usually coreside and the mother has not been absent. Our results indicate that paternal temporary absence increases non housework labour supply by his son. The longer the absence of the father, the larger the impact. One additional month of paternal temporary absence increases a son’s nonhousework labour supply by approximately one week. However, a daughter’s nonhousework labour supply is not affected. We find no evidence that paternal temporary absence influences his children in terms of school attendance or education-related household expenditures.parental absence, temporary migration, schooling, human capital investment, child labour, Vietnam, VLSS

    Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    Get PDF
    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors

    Expression of PEG11 and PEG11AS transcripts in normal and callipyge sheep

    Get PDF
    BACKGROUND: The callipyge mutation is located within an imprinted gene cluster on ovine chromosome 18. The callipyge trait exhibits polar overdominant inheritance due to the fact that only heterozygotes inheriting a mutant paternal allele (paternal heterozygotes) have a phenotype of muscle hypertrophy, reduced fat and a more compact skeleton. The mutation is a single A to G transition in an intergenic region that results in the increased expression of several genes within the imprinted cluster without changing their parent-of-origin allele-specific expression. RESULTS: There was a significant effect of genotype (p < 0.0001) on the transcript abundance of DLK1, PEG11, and MEG8 in the muscles of lambs with the callipyge allele. DLK1 and PEG11 transcript levels were elevated in the hypertrophied muscles of paternal heterozygous animals relative to animals of the other three genotypes. The PEG11 locus produces a single 6.5 kb transcript and two smaller antisense strand transcripts, referred to as PEG11AS, in skeletal muscle. PEG11AS transcripts were detectable over a 5.5 kb region beginning 1.2 kb upstream of the PEG11 start codon and spanning the entire open reading frame. Analysis of PEG11 expression by quantitative PCR shows a 200-fold induction in the hypertrophied muscles of paternal heterozygous animals and a 13-fold induction in homozygous callipyge animals. PEG11 transcripts were 14-fold more abundant than PEG11AS transcripts in the gluteus medius of paternal heterozygous animals. PEG11AS transcripts were expressed at higher levels than PEG11 transcripts in the gluteus medius of animals of the other three genotypes. CONCLUSIONS: The effect of the callipyge mutation has been to alter the expression of DLK1, GTL2, PEG11 and MEG8 in the hypertrophied skeletal muscles. Transcript abundance of DLK1 and PEG11 was highest in paternal heterozygous animals and exhibited polar overdominant gene expression patterns; therefore, both genes are candidates for causing skeletal muscle hypertrophy. There was unique relationship of PEG11 and PEG11AS transcript abundance in the paternal heterozygous animals that suggests a RNA interference mechanism may have a role in PEG11 gene regulation and polar overdominance in callipyge sheep
    corecore