50,550 research outputs found

    Batch Fabrication of High-Performance Planar Patch-Clamp Devices in Quartz

    Get PDF
    The success of the patch-clamp technique has driven an effort to create wafer-based patch-clamp platforms. We develop a lithographic/electrochemical processing scheme that generates ultrasmooth, high aspect ratio pores in quartz. These devices achieve gigaohm seals in nearly 80% of trials, with the majority exhibiting seal resistances from 20-80 GΩ, competing with pipette-based patch-clamp measurements

    Dynaflow ™ 48, a microfluidic chip solution for increasing throughput and data quality in patch-clamp-based drug screening

    Get PDF
    Ion channels are transm embrane proteins, found in virtually all cell types throughout the human body. Ion channels underlie neural communication, memory, behavior, every movement and heartbeat, and are as such prone to cause disease if malfunctioning. Therefore ion channels are very important targets in drug discovery. The gold standard technique for obtaining information on ion channel function with high information content and temporal resolution is patch-clamp. The technique measures the minute currents originating from the movement of ions across the cellular membrane, and enables determination of the potency and efficacy of a drug. However, patch-clamp suffers from serious throughput restrictions due to its laborious nature. To address the throughput problems we have developed a microfluidic chip containing 48 microchannels for an extremely rapid, sequential delivery of a large number of completely controlled solution environments to a lifted, patch-clamped cell. In this way, throughput is increased drastically compared to classical patch-clamp perfusion set-ups, with uncompromised data quality. The 48-microchannel chip has been used for the characterization of drugs affecting ligand-gated ion channels including agonists, antagonists and positive modulators with positive effects on both throughput and data quality.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę

    Electrophysiological analysis of mammalian cells expressing hERG using automated 384-well-patch-clamp

    Get PDF
    BACKGROUND: An in vitro electrophysiological assay system, which can assess compound effects and thus show cardiotoxicity including arrhythmia risks of test drugs, is an essential method in the field of drug development and toxicology. METHODS: In this study, high-throughput electrophysiological recordings of human embryonic kidney (HEK 293) cells and Chinese hamster ovary (CHO) cells stably expressing human ether-a-go-go related gene (hERG) were performed utilizing an automated 384-well-patch-clamp system, which records up to 384 cells simultaneously. hERG channel inhibition, which is closely related to a drug-induced QT prolongation and is increasing the risk of sudden cardiac death, was investigated in the high-throughput screening patch-clamp system. RESULTS: In the automated patch-clamp measurements performed here, K(v) currents were investigated with high efficiency. Various hERG channel blockers showed concentration-dependent inhibition, the 50 % inhibitory concentrations (IC(50)) of those blockers were in good agreement with previous reports. CONCLUSIONS: The high-throughput patch-clamp system has a high potential in the field of pharmacology, toxicology, and cardiac physiology, and will contribute to the acceleration of pharmaceutical drug development and drug safety testing

    Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels

    Get PDF
    Important modulatory roles have been attributed to presynaptic NMDA receptors (NMDARs) located on cerebellar interneuron terminals. Evidence supporting a presynaptic location includes an increase in the frequency of mini events following the application of NMDA and gold particle-labelled NMDA receptor antibody localisation. However, more recent work, using calcium indicators, casts doubt on the idea of presynaptic NMDARs because basket cell varicosities did not show the expected calcium rise following either the local iontophoresis of L-aspartate or the two-photon uncaging of glutamate. (In theory such calcium imaging is sensitive enough to detect the calcium rise from even a single activated receptor.) It has therefore been suggested that the effects of NMDA are mediated via the activation of somatodendritic channels, which subsequently cause a subthreshold depolarization of the axon. Here we report results from a vibrodissociated preparation of cerebellar Purkinje cells, in which the interneuron cell bodies are no longer connected but many of their terminal varicosities remain attached and functional. This preparation can retain both inhibitory and excitatory inputs. We find that the application of NMDA increases the frequency of both types of synaptic event. The characteristics of these events suggest they can originate from interneuron, parallel fiber and even climbing fiber terminals. Interestingly, retrograde signalling seems to activate only the inhibitory terminals. Finally, antibody staining of these cells shows NMDAR-like immunoreactivity co-localised with synaptic markers. Since the Purkinje cells show no evidence of postsynaptic NMDAR-mediated currents, we conclude that functional NMDA receptors are located on presynaptic terminals

    Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings

    Get PDF
    Patch-clamp recording techniques have revolutionized understanding of the function and sub-cellular location of ion channels in excitable cells. The cell-attached patch-clamp configuration represents the method of choice to describe the endogenous properties of voltage-activated ion channels in the axonal, somatic and dendritic membrane of neurons, without disturbance of the intracellular milieu. Here, we directly examine the errors associated with cell-attached patch-clamp measurement of ensemble ion channel activity. We find for a number of classes of voltage-activated channels, recorded from the soma and dendrites of neurons in acute brain-slices and isolated cells, that the amplitude and kinetics of ensemble ion channel activity recorded in cell-attached patches is significantly distorted by transmembrane voltage changes generated by the flow of current through the activated ion channels. We outline simple error-correction procedures that allow a more accurate description of the density and properties of voltage-activated channels to be incorporated into computational models of neurons

    The development of high quality seals for silicon patch-clamp chips.

    Get PDF
    International audiencePlanar patch-clamp is a two-dimensional variation of traditional patch-clamp. By contrast to classical glass micropipette, the seal quality of silicon patch-clamp chips (i.e. seal resistance and seal success rate) have remained poor due to the planar geometry and the nature of the substrate and thus partially obliterate the advantages related to planar patch-clamp. The characterization of physical parameters involved in seal formation is thus of major interest. In this paper, we demonstrate that the physical characterization of surfaces by a set of techniques (Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), surface energy (polar and dispersive contributions), drop angles, impedance spectroscopy, combined with a statistical design of experiments (DOE)) allowed us discriminating chips that provide relevant performances for planar patch-clamp analysis. Analyses of seal quality demonstrate that dispersive interactions and micropore size are the most crucial physical parameters of chip surfaces, by contrast to surface roughness and dielectric membrane thickness. This multi-scale study combined with electrophysiological validation of chips on a diverse set of cell-types expressing various ion channels (IRK1, hERG and hNa(v)1.5 channels) unveiled a suitable patch-clamp chip candidate. This original approach may inspire novel strategies for selecting appropriate surface parameters dedicated to biochips
    corecore