357,326 research outputs found
Depigmented wing patch size is a condition-dependent indicator of viability in male collared flycatchers
Honesty of sexual advertisement is thought to be the result of signalling costs. Because production costs of depigmented plumage patches are probably very low, their role as honest signals of individual quality has been questioned. Costs of bearing these traits, however, should also be taken into account. Studies on proximate determination and possible information content of white badges are very rare. We investigated repeatability, sensu lato heritability, and condition- and age-dependence of white wing patch size, a male display trait in a population of collared flycatchers (Ficedula albicollis), based on 4 years of data. By comparing relationships between age and wing patch size (1) within individuals among years versus (2) among individuals within years, we could address the viability indicator value of the trait. Wing patch size approximately doubled at the transition from subadult to adult plumage, and its change was significantly related to body condition the previous season. Repeatability and heritability values suggest that the trait is informative already in subadult plumage, and that genetic and early environmental effects are important in its determination, the latter only during the first year of life. Thus, wing patch size can act as a condition-dependent signal of genetic quality. Indeed, discrepancy between results from the horizontal and vertical age-dependence approaches shows that the trait was positively related to expected lifespan. After examining several alternative explanations, we conclude that wing patch size indicates genetically based viability. This is the first study to demonstrate a good genes viability benefit conferred by a depigmented plumage patch
Fast Separable Non-Local Means
We propose a simple and fast algorithm called PatchLift for computing
distances between patches (contiguous block of samples) extracted from a given
one-dimensional signal. PatchLift is based on the observation that the patch
distances can be efficiently computed from a matrix that is derived from the
one-dimensional signal using lifting; importantly, the number of operations
required to compute the patch distances using this approach does not scale with
the patch length. We next demonstrate how PatchLift can be used for patch-based
denoising of images corrupted with Gaussian noise. In particular, we propose a
separable formulation of the classical Non-Local Means (NLM) algorithm that can
be implemented using PatchLift. We demonstrate that the PatchLift-based
implementation of separable NLM is few orders faster than standard NLM, and is
competitive with existing fast implementations of NLM. Moreover, its denoising
performance is shown to be consistently superior to that of NLM and some of its
variants, both in terms of PSNR/SSIM and visual quality
Dynaflow ™ 48, a microfluidic chip solution for increasing throughput and data quality in patch-clamp-based drug screening
Ion channels are transm embrane proteins, found in virtually all cell types
throughout the human body. Ion channels underlie neural communication,
memory, behavior, every movement and heartbeat, and are as such prone to
cause disease if malfunctioning. Therefore ion channels are very important
targets in drug discovery. The gold standard technique for obtaining information
on ion channel function with high information content and temporal resolution is
patch-clamp. The technique measures the minute currents originating from the
movement of ions across the cellular membrane, and enables determination of
the potency and efficacy of a drug. However, patch-clamp suffers from serious
throughput restrictions due to its laborious nature. To address the throughput
problems we have developed a microfluidic chip containing 48 microchannels
for an extremely rapid, sequential delivery of a large number of completely
controlled solution environments to a lifted, patch-clamped cell. In this way,
throughput is increased drastically compared to classical patch-clamp perfusion
set-ups, with uncompromised data quality. The 48-microchannel chip has been
used for the characterization of drugs affecting ligand-gated ion channels
including agonists, antagonists and positive modulators with positive effects on
both throughput and data quality.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę
The touch and zap method for in vivo whole-cell patch recording of intrinsic and visual responses of cortical neurons and Glial cells
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe "Touch and Zap", an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the "Touch". By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or "Zap", as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell's intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique
Dependent Nonparametric Bayesian Group Dictionary Learning for online reconstruction of Dynamic MR images
In this paper, we introduce a dictionary learning based approach applied to
the problem of real-time reconstruction of MR image sequences that are highly
undersampled in k-space. Unlike traditional dictionary learning, our method
integrates both global and patch-wise (local) sparsity information and
incorporates some priori information into the reconstruction process. Moreover,
we use a Dependent Hierarchical Beta-process as the prior for the group-based
dictionary learning, which adaptively infers the dictionary size and the
sparsity of each patch; and also ensures that similar patches are manifested in
terms of similar dictionary atoms. An efficient numerical algorithm based on
the alternating direction method of multipliers (ADMM) is also presented.
Through extensive experimental results we show that our proposed method
achieves superior reconstruction quality, compared to the other state-of-the-
art DL-based methods
Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization
In this paper, we propose a general framework for constructing IGA-suitable
planar B-spline parameterizations from given complex CAD boundaries consisting
of a set of B-spline curves. Instead of forming the computational domain by a
simple boundary, planar domains with high genus and more complex boundary
curves are considered. Firstly, some pre-processing operations including
B\'ezier extraction and subdivision are performed on each boundary curve in
order to generate a high-quality planar parameterization; then a robust planar
domain partition framework is proposed to construct high-quality patch-meshing
results with few singularities from the discrete boundary formed by connecting
the end points of the resulting boundary segments. After the topology
information generation of quadrilateral decomposition, the optimal placement of
interior B\'ezier curves corresponding to the interior edges of the
quadrangulation is constructed by a global optimization method to achieve a
patch-partition with high quality. Finally, after the imposition of
C1=G1-continuity constraints on the interface of neighboring B\'ezier patches
with respect to each quad in the quadrangulation, the high-quality B\'ezier
patch parameterization is obtained by a C1-constrained local optimization
method to achieve uniform and orthogonal iso-parametric structures while
keeping the continuity conditions between patches. The efficiency and
robustness of the proposed method are demonstrated by several examples which
are compared to results obtained by the skeleton-based parameterization
approach
- …
