157,426 research outputs found
A proactive password checker
Password selection has long been a difficult issue; traditionally, passwords are either assigned by the computer or chosen by the user. When the computer does the assignment, the passwords are often hard to remember; when the user makes the selection, the passwords are often easy to guess. This paper describes a technique, and a mechanism, to allow users to select passwords which to them are easy to remember but to others would be very difficult to guess. The technique is site, user, and group compatible, and allows rapid changing of constraints imposed upon the password. Although experience with this technique is limited, it appears to have much promise
Towards a metric for recognition-based graphical password security
Recognition-based graphical password (RBGP) schemes are not easily compared in terms of security. Current research uses many different measures which results in confusion as to whether RBGP schemes are secure against guessing and capture attacks. If it were possible to measure all RBGP schemes in a common way it would provide an easy comparison between them, allowing selection of the most secure design. This paper presents a discussion of potential attacks against recognition-based graphical password (RBGP) authentication schemes. As a result of this examination a preliminary measure of the security of a recognition-based scheme is presented. The security measure is a 4-tuple based on distractor selection, shoulder surfing,
intersection and replay attacks. It is aimed to be an initial proposal and is designed in a way which is extensible and adjustable as further research in the area develops. Finally, an example is provided by application to the PassFaces scheme
Hidden-Markov Program Algebra with iteration
We use Hidden Markov Models to motivate a quantitative compositional
semantics for noninterference-based security with iteration, including a
refinement- or "implements" relation that compares two programs with respect to
their information leakage; and we propose a program algebra for source-level
reasoning about such programs, in particular as a means of establishing that an
"implementation" program leaks no more than its "specification" program.
This joins two themes: we extend our earlier work, having iteration but only
qualitative, by making it quantitative; and we extend our earlier quantitative
work by including iteration. We advocate stepwise refinement and
source-level program algebra, both as conceptual reasoning tools and as targets
for automated assistance. A selection of algebraic laws is given to support
this view in the case of quantitative noninterference; and it is demonstrated
on a simple iterated password-guessing attack
Selection of EAP-authentication methods in WLANs
IEEE 802.1X is a key part of IEEE802.11i. By employing Extensible Authentication Protocol (EAP) it supports a variety of upper layer
authentication methods each with different benefits and drawbacks. Any one of these authentication methods can be the ideal choice for a specific networking environment. The fact that IEEE 802.11i leaves the selection of the most suitable authentication method to system implementers makes the authentication framework more flexible, but on the other hand leads to the
question of how to select the authentication method that suits an organisation’s requirements and specific networking environment. This paper gives an overview of EAP authentication methods and provides a table comparing their properties. It then identifies the crucial factors to be considered when employing EAP authentication methods in WLAN environments. The paper presents algorithms that guide the selection of an EAP-authentication method for a WLAN and demonstrates their application through three examples
Transparent password policies: A case study of investigating end-user situational awareness
Transparent password policies are utilized by organizations in an effort to ease the user from the burden of configuring authentication settings while maintaining a high level of security. However, authentication transparency can challenge security and usability and can impact the awareness of the end-users with regards to the protection level that is realistically achieved. For authentication transparency to be effective, the triptych security – usability – situational awareness should be considered when designing relevant security solutions. Although various efforts have been made in the literature, the usability aspects of the password selection process are not well understood or addressed in the context of end-user situational awareness. This research work specifies three security and usability-related strategies that represent the organizations’, the end users’ and the attackers’ objectives with regards to password construction. Understanding each actor’s perspective can greatly assist in increasing situational awareness with regards to the authentication controls usage and effectiveness. Furthermore, a case study is presented to evaluate if, and in what way, transparent password policies, that isolate users’ involvement can affect the perspective of the end-user with regards to the security situation. Results showed that the transparent approached utilized has created a negative situation, users were not aware and never dealt with changing or trying to alter default security settings, leaving their home network vulnerable to external attacks. Finally, initial recommendations are made to organizations that would like to implement and evaluate transparent authentication controls
Seamless and Secure VR: Adapting and Evaluating Established Authentication Systems for Virtual Reality
Virtual reality (VR) headsets are enabling a wide range of new
opportunities for the user. For example, in the near future users
may be able to visit virtual shopping malls and virtually join
international conferences. These and many other scenarios pose
new questions with regards to privacy and security, in particular
authentication of users within the virtual environment. As a first
step towards seamless VR authentication, this paper investigates
the direct transfer of well-established concepts (PIN, Android
unlock patterns) into VR. In a pilot study (N = 5) and a lab
study (N = 25), we adapted existing mechanisms and evaluated
their usability and security for VR. The results indicate that
both PINs and patterns are well suited for authentication in
VR. We found that the usability of both methods matched the
performance known from the physical world. In addition, the
private visual channel makes authentication harder to observe,
indicating that authentication in VR using traditional concepts
already achieves a good balance in the trade-off between usability
and security. The paper contributes to a better understanding of
authentication within VR environments, by providing the first
investigation of established authentication methods within VR,
and presents the base layer for the design of future authentication
schemes, which are used in VR environments only
- …
