868,360 research outputs found

    Shape-dependence of particle rotation in isotropic turbulence

    Full text link
    We consider the rotation of neutrally buoyant axisymmetric particles suspended in isotropic turbulence. Using laboratory experiments as well as numerical and analytical calculations, we explore how particle rotation depends upon particle shape. We find that shape strongly affects orientational trajectories, but that it has negligible effect on the variance of the particle angular velocity. Previous work has shown that shape significantly affects the variance of the tumbling rate of axisymmetric particles. It follows that shape affects the spinning rate in a way that is, on average, complementary to the shape-dependence of the tumbling rate. We confirm this relationship using direct numerical simulations, showing how tumbling rate and spinning rate variances show complementary trends for rod-shaped and disk-shaped particles. We also consider a random but non-turbulent flow. This allows us to explore which of the features observed for rotation in turbulent flow are due to the effects of particle alignment in vortex tubes

    Multi-particle long-range rapidity correlations from fluctuation of the fireball longitudinal shape

    Full text link
    We calculate the genuine long-range multi-particle rapidity correlation functions, Cn(y1,...,yn)C_{n}(y_1,...,y_n) for n=3,4,5,6n=3,4,5,6, originating from fluctuations of the fireball longitudinal shape. In these correlation functions any contribution from the short-range two-particle correlations, and in general up to (n1)(n-1)-particle in CnC_n, is suppressed. The information about the fluctuating fireball shape in rapidity is encoded in the cumulants of coefficients of the orthogonal polynomial expansion of particle distributions in rapidity.Comment: 8 page

    Effect of particle shape and fragmentation on the response of particle dampers

    Get PDF
    A particle damper (PD) is a device that can attenuate mechanical vibrations thanks to the dissipative collisions between grains contained in a cavity attached to the vibrating structure. It has been recently suggested that, under working conditions in which the damping is optimal, the PD has a universal response in the sense that the specific dissipative properties of the grains cease to be important for the design of the device. We present evidence from simulations of PDs containing grains of different sizes, shapes and restitution coefficients, that the universal response is also valid when fragmentation of the grains occurs (generally due to intensive operation of the PD). In contrast, the welding of grains (caused by operation under high temperatures) can take the PD out of the universal response and deteriorate the attenuation. Interestingly, we observed that even at working conditions off the optimal damping, the shape of the grains remains unimportant for the response of the PD.Fil: Sánchez, Martín. Universidad Tecnológica Nacional; ArgentinaFil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Pugnaloni, Luis Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional; Argentin

    Mathematical relation predicts achievable densities of compacted particles

    Get PDF
    Series of mathematical relationships predicts compact densities of spherical shapes in a cylinder as a function of particle dimension, and compact density of angular shapes as a function of particle shape and absolute size

    Transforming mesoscale granular plasticity through particle shape

    Full text link
    When an amorphous material is strained beyond the point of yielding it enters a state of continual reconfiguration via dissipative, avalanche-like slip events that relieve built-up local stress. However, how the statistics of such events depend on local interactions among the constituent units remains debated. To address this we perform experiments on granular material in which we use particle shape to vary the interactions systematically. Granular material, confined under constant pressure boundary conditions, is uniaxially compressed while stress is measured and internal rearrangements are imaged with x-rays. We introduce volatility, a quantity from economic theory, as a powerful new tool to quantify the magnitude of stress fluctuations, finding systematic, shape-dependent trends. For all 22 investigated shapes the magnitude ss of relaxation events is well-fit by a truncated power law distribution P(s)sτexp(s/s)P(s)\sim {s}^{-\tau} exp(-s/s^*), as has been proposed within the context of plasticity models. The power law exponent τ\tau for all shapes tested clusters around τ=\tau= 1.5, within experimental uncertainty covering the range 1.3 - 1.7. The shape independence of τ\tau and its compatibility with mean field models indicate that the granularity of the system, but not particle shape, modifies the stress redistribution after a slip event away from that of continuum elasticity. Meanwhile, the characteristic maximum event size ss^* changes by two orders of magnitude and tracks the shape dependence of volatility. Particle shape in granular materials is therefore a powerful new factor influencing the distance at which an amorphous system operates from scale-free criticality. These experimental results are not captured by current models and suggest a need to reexamine the mechanisms driving mesoscale plastic deformation in amorphous systems.Comment: 11 pages, 8 figures. v3 adds a new appendix and figure about event rates and changes several parts the tex

    Stable Bose-Einstein correlations

    Full text link
    The shape of Bose-Einstein (or HBT) correlation functions is determined for the case when particles are emitted from a stable source, obtained after convolutions of large number of elementary random processes. The two-particle correlation function is shown to have a {\it stretched exponential} shape, characterized by the L\'evy index of stability 0<α2 0 < \alpha \le 2 and the scale parameter RR. The normal, Gaussian shape corresponds to a particular case, when α=2\alpha = 2 is selected. The asymmetry parameter of the stable source, β\beta is shown to be proportional to the angle, measured by the normalized three-particle cumulant correlations.Comment: 7 pages, no figures, invited talk of T. Csorgo at the 2nd Warsaw Meeting on Particle Correlations and Resonances in HIC, see http://hirg.if.pw.edu.pl/en/meeting/oct2003/talks/csorgo/Csorgo.pp
    corecore