463,400 research outputs found
Dictionary learning for data recovery in positron emission tomography
Compressed sensing (CS) aims to recover images from fewer measurements than that governed by the Nyquist sampling theorem. Most CS methods use analytical predefined sparsifying domains such as total variation, wavelets, curvelets, and finite transforms to perform this task. In this study, we evaluated the use of dictionary learning (DL) as a sparsifying domain to reconstruct PET images from partially sampled data, and compared the results to the partially and fully sampled image (baseline).A CS model based on learning an adaptive dictionary over image patches was developed to recover missing observations in PET data acquisition. The recovery was done iteratively in two steps: a dictionary learning step and an image reconstruction step. Two experiments were performed to evaluate the proposed CS recovery algorithm: an IEC phantom study and five patient studies. In each case, 11% of the detectors of a GE PET/CT system were removed and the acquired sinogram data were recovered using the proposed DL algorithm. The recovered images (DL) as well as the partially sampled images (with detector gaps) for both experiments were then compared to the baseline. Comparisons were done by calculating RMSE, contrast recovery and SNR in ROIs drawn in the background, and spheres of the phantom as well as patient lesions.For the phantom experiment, the RMSE for the DL recovered images were 5.8% when compared with the baseline images while it was 17.5% for the partially sampled images. In the patients' studies, RMSE for the DL recovered images were 3.8%, while it was 11.3% for the partially sampled images. Our proposed CS with DL is a good approach to recover partially sampled PET data. This approach has implications toward reducing scanner cost while maintaining accurate PET image quantification
Monte Carlo Bayesian Reinforcement Learning
Bayesian reinforcement learning (BRL) encodes prior knowledge of the world in
a model and represents uncertainty in model parameters by maintaining a
probability distribution over them. This paper presents Monte Carlo BRL
(MC-BRL), a simple and general approach to BRL. MC-BRL samples a priori a
finite set of hypotheses for the model parameter values and forms a discrete
partially observable Markov decision process (POMDP) whose state space is a
cross product of the state space for the reinforcement learning task and the
sampled model parameter space. The POMDP does not require conjugate
distributions for belief representation, as earlier works do, and can be solved
relatively easily with point-based approximation algorithms. MC-BRL naturally
handles both fully and partially observable worlds. Theoretical and
experimental results show that the discrete POMDP approximates the underlying
BRL task well with guaranteed performance.Comment: Appears in Proceedings of the 29th International Conference on
Machine Learning (ICML 2012
The use of digital techniques to examine the intermittent region of a turbulent jet
Voltage signals, sampled at a high rate in the intermittent region of a round jet, are analyzed to provide instantaneous velocity vector information and measures of the vorticity and dissipation scales. A clustering routine to assess the feasibility of using the voltage readings to define the vortical, nonvortical state of the flow is also utilized. The results indicate that the clustering routine is partially successful; more sophisticated discrimination techniques will be required for a complete specification
Sampling-based optimal kinodynamic planning with motion primitives
This paper proposes a novel sampling-based motion planner, which integrates
in RRT* (Rapidly exploring Random Tree star) a database of pre-computed motion
primitives to alleviate its computational load and allow for motion planning in
a dynamic or partially known environment. The database is built by considering
a set of initial and final state pairs in some grid space, and determining for
each pair an optimal trajectory that is compatible with the system dynamics and
constraints, while minimizing a cost. Nodes are progressively added to the tree
{of feasible trajectories in the RRT* by extracting at random a sample in the
gridded state space and selecting the best obstacle-free motion primitive in
the database that joins it to an existing node. The tree is rewired if some
nodes can be reached from the new sampled state through an obstacle-free motion
primitive with lower cost. The computationally more intensive part of motion
planning is thus moved to the preliminary offline phase of the database
construction at the price of some performance degradation due to gridding. Grid
resolution can be tuned so as to compromise between (sub)optimality and size of
the database. The planner is shown to be asymptotically optimal as the grid
resolution goes to zero and the number of sampled states grows to infinity
Association of five Austrodanthonia species (family Poaceae) with large and small scale environmental features in central western New South Wales
Twenty-eight natural populations of Wallaby Grasses, Austrodanthonia species, in central western New South Wales were sampled and species presence related to a suite of environmental characteristics. An average of 12 plants were selectively sampled from each population; most populations consisted of at least four out of five species, Austrodanthonia bipartita, A. caespitosa, A. eriantha, A. fulva and A. setacea. Numerous ecological factors allowed the widespread co-occurrence of these closely-related species. Large-scale rainfall and climatic factors were correlated with species-presence but no universal small-scale site environmental variables were important for all species. The most widespread species was Austrodanthonia caespitosa and environmental variations at a local site scale, depending on exposure to solar radiation, may at least partially overcome regional rainfall and climate influences
- …
