105,313 research outputs found
Systems analysis of host-parasite interactions.
Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies
Epidemiology of parasitic protozoan infections in Soay sheep (Ovis aries L.) on St Kilda
The feral Soay sheep (Ovis aries L.) population on Hirta, St Kilda, is host to a diverse component parasite community, but previous parasitological studies of the population have only focussed on the metazoan species. This paper reports the first epidemiological study of the protozoan species comprising Cryptosporidium parvum, Giardia duodenalis and 11 species of Eimeria in Soay sheep across 3 years of varying host population density. Prevalence and intensity of almost all species of protozoa significantly decreased with host age, with the exception of E. granulosa, which increased in prevalence with host age. The prevalence of C. parvum appeared to vary positively with host population density but that of G. duodenalis did not vary significantly with density. Most species of Eimeria showed a distinct lag in infection level following the host population crash of 2002, taking up to 2 years to decrease. Mixed Eimeria species intensity and diversity were highest in 2002, a year of low host density. Parasite diversity decreased with host age and was higher in males. There were 5 positive pair-wise associations between protozoa species in terms of prevalence. The results of this study highlight the potential for protozoal infection to shape the evolution of parasite resistance in wild host populations harbouring diverse parasite species.</p
One Health – an Ecological and Evolutionary Framework for tackling Neglected Zoonotic Diseases
Understanding the complex population biology and transmission ecology of multihost parasites has been declared as one of the major challenges of biomedical sciences for the 21st century and the Neglected Zoonotic Diseases (NZDs) are perhaps the most neglected of all the Neglected Tropical Diseases (NTDs). Here we consider how multihost parasite transmission and evolutionary dynamics may affect the success of human and animal disease control programmes, particularly neglected diseases of the developing world. We review the different types of zoonotic interactions that occur, both ecological and evolutionary, their potential relevance for current human control activities, and make suggestions for the development of an empirical evidence base and theoretical framework to better understand and predict the outcome of such interactions. In particular, we consider whether preventive chemotherapy, the current mainstay of NTD control, can be successful without a One Health approach. Transmission within and between animal reservoirs and humans can have important ecological and evolutionary consequences, driving the evolution and establishment of drug resistance, as well as providing selective pressures for spill‐over, host switching, hybridizations and introgressions between animal and human parasites. Our aim here is to highlight the importance of both elucidating disease ecology, including identifying key hosts and tailoring control effort accordingly, and understanding parasite evolution, such as precisely how infectious agents may respond and adapt to anthropogenic change. Both elements are essential if we are to alleviate disease risks from NZDs in humans, domestic animals and wildlife
Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities
Many parasites circulate endemically within communities of multiple host species. To understand disease persistence within these communities, it is essential to know the contribution each host species makes to parasite transmission and maintenance. However, quantifying those contributions is challenging. We present a conceptual framework for classifying multihost sharing, based on key thresholds for parasite persistence. We then develop a generalized technique to quantify each species’ contribution to parasite persistence, allowing natural systems to be located within the framework. We illustrate this approach using data on gastrointestinal parasites circulating within rodent communities and show that, although many parasites infect several host species, parasite persistence is often driven by just one host species. In some cases, however, parasites require multiple host species for maintenance. Our approach provides a quantitative method for differentiating these cases using minimal reliance on system-specific parameters, enabling informed decisions about parasite management within poorly understood multihost communities
Post-treatment follow-up study of abdominal cystic echinococcosis in Tibetan communities of northwest Sichuan Province, China
Background: Human cystic echinococcosis (CE), caused by the larval stage of Echinococcus granulosus, with the liver as the
most frequently affected organ, is known to be highly endemic in Tibetan communities of northwest Sichuan Province.
Antiparasitic treatment with albendazole remains the primary choice for the great majority of patients in this resource-poor
remote area, though surgery is the most common approach for CE therapy that has the potential to remove cysts and lead
to complete cure. The current prospective study aimed to assess the effectiveness of community based use of cyclic
albendazole treatment in Tibetan CE cases, and concurrently monitor the changes of serum specific antibody levels during
treatment.
Methodology/Principal Findings: Ultrasonography was applied for diagnosis and follow-up of CE cases after cyclic
albendazole treatment in Tibetan communities of Sichuan Province during 2006 to 2008, and serum specific IgG antibody
levels against Echinococcus granulosus recombinant antigen B in ELISA was concurrently monitored in these cases. A total of
196 CE cases were identified by ultrasound, of which 37 (18.9%) showed evidence of spontaneous healing/involution of
hepatic cyst(s) with CE4 or CE5 presentations. Of 49 enrolled CE cases for treatment follow-up, 32.7% (16) were considered
to be cured based on B-ultrasound after 6 months to 30 months regular albendazole treatment, 49.0% (24) were improved,
14.3% (7) remained unchanged, and 4.1% (2) became aggravated. In general, patients with CE2 type cysts (daughter cysts
present) needed a longer treatment course for cure (26.4 months), compared to cases with CE1 (univesicular cysts) (20.4
months) or CE3 type (detached cyst membrane or partial degeneration of daughter cysts) (9 months). In addition, the
curative duration was longer in patients with large (.10 cm) cysts (22.3 months), compared to cases with medium (5–
10 cm) cysts (17.3 months) or patients with small (,5 cm) cysts (6 months). At diagnosis, seven (53.8%) of 13 cases with CE1
type cysts without any previous intervention showed negative specific IgG antibody response to E. granulosus recombinant
antigen B (rAgB). However, following 3 months to 18 months albendazole therapy, six of these 7 initially seronegative CE1
cases sero-converted to be specific IgG antibody positive, and concurrently ultrasound scan showed that cysts changed to
CE3a from CE1 type in all the six CE cases. Two major profiles of serum specific IgG antibody dynamics during albendazole
treatment were apparent in CE cases: (i) presenting as initial elevation followed by subsequent decline, or (ii) a persistent
decline. Despite a decline, however, specific antibody levels remained positive in most improved or cured CE cases.
Conclusions: This was the first attempt to follow up community-screened cystic echinococcosis patients after albendazole
therapy using ultrasonography and serology in an endemic Tibetan region. Cyclic albendazole treatment proved to be
effective in the great majority of CE cases in this resource-poor area, but periodic abdominal ultrasound examination was
necessary to guide appropriate treatment. Oral albendazole for over 18 months was more likely to result in CE cure. Poor
drug compliance resulted in less good outcomes. Serology with recombinant antigen B could provide additional limited
information about the effectiveness of albendazole in CE cases. Post-treatment positive specific IgG antibody
seroconversion, in initially seronegative, CE1 patients was considered a good indication for positive therapeutic efficacy
of albendazole
Accuracy of Malaria Rapid Diagnostic Tests in Community Studies and their Impact on Treatment of Malaria in an Area with Declining Malaria Burden in North-Eastern Tanzania.
Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2=367.7, p<0.001), while the specificity was significantly higher (94.3%; χ2=143.1, p<0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of<200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p<0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5 °C) (OR≤0.63, p≤0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p<0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers
Shrinking the Malaria Map: A Prospectus on Malaria Elimination
\ud
Thirty-nine countries across the world are making progress toward malaria elimination. Some are committed to nationwide elimination, while others are pursuing spatially progressive elimination within their borders. Influential donor and multilateral organizations are supporting their goals of achieving malaria-free status. With elimination back on the global agenda, countries face a myriad of questions. Should they change their programs to eliminate rather than control malaria? What tools are available? What policies need to be put into place? How will they benefit from elimination? Unfortunately, answers to these questions, and resources for agencies and country program managers considering or pursuing elimination, are scarce. The 39 eliminating countries are all positioned along the endemic margins of the disease, yet they naturally experience a variety of country characteristics and epidemiologies that make their malaria situations different from one another. The Malaria Elimination Group (MEG) and this Prospectus recognize\ud
that there is no single solution, strategy, or time line that will be appropriate for every country, and each is encouraged to initiate a comprehensive evaluation of its readiness and strategy for elimination. The Prospectus is designed to guide countries in conducting these assessments. The Prospectus provides detailed and informed discussion on the practical means of achieving and sustaining zero transmission. It is designed as a road map, providing direction and options from which to choose an appropriate path. As on all maps, the destination is clearly marked, but the possible routes to reach it are numerous. The Prospectus is divided into two sections: Section 1 Eliminating Malaria comprises four chapters covering the strategic components important to the periods before, during, and after an elimination program. Section 2 Tools for the Job, comprises six chapters that outline basic information about how interventions in an elimination program will be different from those in a control setting. Chapter 1, Making the Decision, evaluates the issues that a country should consider when deciding whether or not to eliminate malaria. The chapter begins with a discussion about the quantitative and qualitative benefits that a country could expect from eliminating malaria and then recommends a thorough feasibility assessment. The feasibility assessment is based on three major components: operational, technical, and financial feasibility. Cross-border and regional collaboration is a key subject in this chapter. Chapter 2, Getting to Zero, describes changes that programs must consider when moving from sustained control to an elimination goal. The key strategic issues that must be addressed are considered, including supply chains, surveillance systems, intersectoral collaboration, political will, and legislative framework. Cross-border collaboration is again a key component in Getting to Zero. Chapter 3, Holding the Line, provides recommendations on how to conduct an assessment of two key factors that will affect preventing the reemergence of malaria once transmission is interrupted: outbreak risk and importation risk. The chapter emphasizes the need for a strong surveillance system in order to prevent and, if necessary, respond to imported cases. Chapter 4, Financing Elimination, reviews the cost-effectiveness of elimination as compared with sustained control and then presents the costs of selected elimination programs as examples. It evaluates four innovative financing mechanisms that must support elimination, emphasizing the need for predictable and stable financing. Case studies from Swaziland and two provinces in China are provided. Chapter 5, Understanding Malaria, considers malaria from the point of view of elimination and provides a concise overview of the current burden of the disease, malaria transmission, and the available interventions that can be used in an elimination program. Chapter 6, Learning from History, extracts important lessons from the Global Malaria Eradication Program and analyzes some elimination efforts that were successful and some that were unsuccessful. The chapter also reviews how the malaria map has been shrinking since 1900. xiv A Prosp ectus on Mala ria Elimi natio n\ud
Chapter 7, Measuring Malaria for Elimination, provides a precise language for discussing malaria and gives the elimination discussion a quantitative structure. The chapter also describes the role of epidemiological theory and mathematical modeling in defining and updating an elimination agenda for malaria. Chapter 8, Killing the Parasite, outlines the importance of case detection and management in an elimination setting. Options for diagnosis, the hidden challenge of Plasmodium vivax in an elimination setting, and the impact of immunity are all discussed. Chapter 9, Suppressing the Vector, explores vector control, a necessary element of any malaria program. It considers optimal methods available to interrupt transmission and discusses potential changes, such as insecticide resistance, that may affect elimination efforts. Chapter 10, Identifying the Gaps — What We Need to Know, reviews the gaps in our understanding of what is required for elimination. The chapter outlines a short-term research agenda with a focus on the operational needs that countries are facing today. The Prospectus reviews the operational, technical, and financial feasibility for those working on the front lines and considers whether, when, and how to eliminate malaria. A companion document, A Guide on Malaria Elimination for Policy Makers, is provided for those countries or agencies whose responsibility is primarily to make the policy decisions on whether to pursue or support a malaria elimination strategy. The Guide is available at www.malaria eliminationgroup.org
Schistosomes and snails: A molecular encounter
Copyright © 2014 Knight, Arican-Goktas, Ittiprasert, Odoemelam, Miller and Bridger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Copyright © 2014 Knight, Arican-Goktas, Ittiprasert, Odoemelam, Miller and Bridger. Biomphalaria glabrata snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis in the Western hemisphere. For the past two decades, tremendous advances have been made in research aimed at elucidating the molecular basis of the snail/parasite interaction. The growing concern that there is no vaccine to prevent schistosomiasis and only one effective drug in existence provides the impetus to develop new control strategies based on eliminating schistosomes at the snail-stage of the life cycle. To elucidate why a given snail is not always compatible to each and every schistosome it encounters, B. glabrata that are either resistant or susceptible to a given strain of S. mansoni have been employed to track molecular mechanisms governing the snail/schistosome relationship. With such snails, genetic markers for resistance and susceptibility were identified. Additionally, differential gene expression studies have led to the identification of genes that underlie these phenotypes. Lately, the role of schistosomes in mediating non-random relocation of gene loci has been identified for the first time, making B. glabrata a model organism where chromatin regulation by changes in nuclear architecture, known as spatial epigenetics, orchestrated by a major human parasite can now be investigated. This review will highlight the progress that has been made in using molecular approaches to describe snail/schistosome compatibility issues. Uncovering the signaling networks triggered by schistosomes that provide the impulse to turn genes on and off in the snail host, thereby controlling the outcome of infection, could also yield new insights into anti-parasite mechanism(s) that operate in the human host as well.NIH-NIAID and the Malacological Society of London
An empirical method to estimate the effect of soil on the rate for transmission of damping‐off disease
The ability of some soils to suppress soil-borne diseases has been long recognised, but the underlying epidemiological mechanisms by which this occurs are largely unknown.• Using damping-off disease caused by Rhizoctonia solani, spreading through replicated populations of radish (Raphanus sativus) seedlings growing in soil or sand, we introduce and test a method to show how the suppressive effects of soil affect the rates of primary and secondary infection, which control amplification and spread of disease. The method involves spatial mapping of disease over time combined with an epidemiological analysis to distinguish primary from secondary infection in a dynamically changing population of susceptible hosts available for infection.• Analysis of the secondary transmission rates revealed three main trends: the transmission rate was lower for soil compared with sand; the transmission rate varied systematically with time, first increasing and then decreasing; and the transmission rate varied amongst replicate epidemics.• The consequences of these findings for damping-off epidemics and the potential of this type of analysis to contribute to an epidemiological understanding of the effect of soil on the suppression of epidemics are discussed
- …
