6,153 research outputs found
Prognostic significance of serine-phosphorylated STAT3 expression in pT1-T2 oral tongue carcinoma
Objectives. Phosphorylated (activated) STAT3 (pSTAT3) is a regulator of numerous genes that play an essential part in the onset, development and progression of cancer; it is involved in cell proliferation and preventing apoptosis, and in invasion, angiogenesis, and the evasion of immune surveillance. This study aimed mainly to investigate the potential prognostic role of pSTAT3 expression in oral tongue squamous cell carcinoma (SCC). Methods. Phospho-ser727 STAT3 immunolabeling was correlated with prognostic parameters in 34 consecutive cases of pT1\u2013T2 tongue SCCs undergoing primary surgery. Computer-based image analysis was used for the immunohistochemical reactions analysis. Results. Statistical analysis showed a difference in disease-free survival (DFS) when patients were stratified by pN status (P=0.031). Most tumors had variable degrees (mean\ub1SD, 80.7%\ub123.8%) of intense nuclear immunoreaction to pSTAT3. Our findings rule out any significant association of serine-phosphorylated nuclear STAT3 expression with tumor stage, grade, lymph node metastasis, recurrence rate, or DFS. Conclusion. In spite of these results, it is worth further investigating the role of pSTAT3 (serine-and tyrosine-pSTAT3) in oral tongue SCC in larger series because preclinical models are increasingly showing that several anticancer strategies would benefit from STAT3 phosphorylation inhibition
Signal transduction and activator of transcription-3 (STAT3) in patients with colorectal cancer: associations with the phenotypic features of the tumour and host
Purpose: In patients with colorectal cancer (CRC), a high-density local inflammatory infiltrate response is associated with improved survival, whereas elevated systemic inflammatory responses are associated with poor survival. One potential unifying mechanism is the IL-6/JAK/STAT3 pathway. The present study examines the relationship between tumour total STAT3 and phosphorylated STAT3Tyr705 (pSTAT3) expression, host inflammatory responses and survival in patients undergoing resection of stage I-III CRC. Experimental Design: Immunohistochemical assessment of STAT3/pSTAT3 expression was performed using a tissue microarray and tumour cell expression divided into tertiles using the weighted histoscore. The relationship between STAT3/pSTAT3 expression and local inflammatory (CD3+, CD8+, CD45R0+, FOXP3+ T-cell density and Klintrup-Mäkinen grade) and systemic inflammatory responses and cancer-specific survival were examined. Results: 196 patients were included in the analysis. Cytoplasmic and nuclear STAT3 expression strongly correlated (r=0.363, P<0.001); nuclear STAT3 and pSTAT3 expression weakly correlated (r=0.130, P=0.068). Cytoplasmic STAT3 was inversely associated with the density of CD3+ (P=0.012), CD8+ (P=0.003) and FOXP3+ T-lymphocytes (P=0.002) within the cancer cell nests and was associated with an elevated systemic inflammatory response as measured by modified Glasgow Prognostic Score (mGPS2: 19% vs. 4%, P=0.004). The combination of nuclear STAT3/pSTAT3 stratified five-year survival from 81% to 62% (P=0.012), however was not associated with survival independent of venous invasion, tumour perforation or tumour budding. Conclusion In patients undergoing CRC resection, STAT3 expression was associated with adverse host inflammatory responses and reduced survival. Up-regulation of tumour STAT3 may be an important mechanism whereby the tumour deregulates local and systemic inflammatory responses
Recommended from our members
Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells.
Radiotherapy (RT) is the major modality for control of glioblastoma multiforme (GBM), the most aggressive brain tumor in adults with poor prognosis and low patient survival rate. To improve the RT efficacy on GBM, the mechanism causing tumor adaptive radioresistance which leads to the failure of tumor control and lethal progression needs to be further elucidated. Here, we conducted a comparative analysis of RT-treated recurrent tumors versus primary counterparts in GBM patients, RT-treated orthotopic GBM tumors xenografts versus untreated tumors and radioresistant GBM cells versus wild type cells. The results reveal that activation of STAT3, a well-defined redox-sensitive transcriptional factor, is causally linked with GBM adaptive radioresistance. Database analysis also agrees with the worse prognosis in GBM patients due to the STAT3 expression-associated low RT responsiveness. However, although the radioresistant GBM cells can be resensitized by inhibition of STAT3, a fraction of radioresistant cells can still survive the RT combined with STAT3 inhibition or CRISPR/Cas9-mediated STAT3 knockout. A complementally enhanced activation of ERK1/2 by STAT3 inhibition is identified responsible for the survival of the remaining resistant tumor cells. Dual inhibition of ERK1/2 and STAT3 remarkably eliminates resistant GBM cells and inhibits tumor regrowth. These findings demonstrate a previously unknown feature ofSTAT3-mediated ERK1/2 regulation and an effective combination of two targets in resensitizing GBM to RT
Expression of PIK3CA mutant E545K in the mammary gland induces heterogeneous tumors but is less potent than mutant H1047R.
The phosphoinositide 3-kinase (PI3K) signaling cascade is a key mediator of cellular growth, survival and metabolism and is frequently subverted in human cancer. The gene encoding for the alpha catalytic subunit of PI3K (PIK3CA) is mutated and/or amplified in ∼30% of breast cancers. Mutations in either the kinase domain (H1047R) or the helical domain (E545K) are most common and result in a constitutively active enzyme with oncogenic capacity. PIK3CA(H1047R) was previously demonstrated to induce tumors in transgenic mouse models; however, it was not known whether overexpression of PIK3CA(E545K) is sufficient to induce mammary tumors and whether tumor initiation by these two types of mutants differs. Here, we demonstrate that expression of PIK3CA(E545K) in the mouse mammary gland induces heterogenous mammary carcinomas but with a longer latency than PIK3CA(H1047R)-expressing mice. Our results suggest that the helical domain mutant PIK3CA(E545K) is a less potent inducer of mammary tumors due to less efficient activation of downstream Akt signaling
Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS.
Reactive astrocytes influence post-injury recovery, repair, and pathogenesis of the mammalian CNS. Much of the regulation of astrocyte reactivity, however, remains to be understood. Using genetic loss and gain-of-function analyses in vivo, we show that the conserved MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) promotes astrocyte reactivity and glial scar formation after CNS injury. Inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activators pSTAT3 and SOX9. The identification of LZK as a critical cell-intrinsic regulator of astrocyte reactivity expands our understanding of the multicellular response to CNS injury and disease, with broad translational implications for neural repair
A 3-D in vitro co-culture model of mammary gland involution.
Involution is a process whereby the mammary gland undergoes extensive tissue remodelling involving exquisitely coordinated cell death, extracellular matrix degradation and adipose tissue regeneration following the weaning of offspring. These processes are mediated in part through Jak/Stat signalling pathways, which can be deregulated in breast cancer. Synthetic in vitro analogues of the breast could become important tools for studying tumorigenic processes, or as personalized drug discovery platforms and predictors of therapeutic response. Ideally, such models should support 3D neo-tissue formation, so as to recapitulate physiological organ function, and be compatible with high-throughput screening methodologies. We have combined cell lines of epithelial, stromal and immunological origin within engineered porous collagen/hyaluronic acid matrices, demonstrating 3D-specific molecular signatures. Furthermore seeded cells form mammary-like branched tissues, with lobuloalveolar structures that undergo inducible involution phenotypes reminiscent of the native gland under hormonal/cytokine regulation. We confirm that autophagy is mediated within differentiated mammary epithelial cells in a Stat-dependent manner at early time points following the removal of a prolactin stimulus (H/WD). In addition, epithelial cells express markers of an M2 macrophage lineage under H/WD, a process that is attenuated with the introduction of the monocyte/macrophage cell line RAW 264.7. Thus, such 3D models are suitable platforms for studying cell-cell interactions and cell death mechanisms in relation to cancer
Exogenous Leukemia Inhibitory Factor Stimulates Oligodendrocyte Progenitor Cell Proliferation and Enhances Hippocampal Remyelination
New CNS neurons and glia are generated throughout adulthood from endogenous neural stem and progenitor cells. These progenitors can respond to injury, but their ability to proliferate, migrate, differentiate, and survive is usually insufficient to replace lost cells and restore normal function. Potentiating the progenitor response with exogenous factors is an attractive strategy for the treatment of nervous system injuries and neurodegenerative and demyelinating disorders. Previously, we reported that delivery of leukemia inhibitory factor (LIF) to the CNS stimulates the self-renewal of neural stem cells and the proliferation of parenchymal glial progenitors. Here we identify these parenchymal glia as oligodendrocyte (OL) progenitor cells (OPCs) and show that LIF delivery stimulates their proliferation through the activation of gp130 receptor signaling within these cells. Importantly, this effect of LIF on OPC proliferation can be harnessed to enhance the generation of OLs that express myelin proteins and reform nodes of Ranvier in the context of chronic demyelination in the adult mouse hippocampus. Our findings, considered together with the known beneficial effects of LIF on OL and neuron survival, suggest that LIF has both reparative and protective activities that make it a promising potential therapy for CNS demyelinating disorders and injuries
Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis
Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis
- …
