17 research outputs found
Osmolality and non-structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe
Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter acclimation in these cold regions. Present results for the secondary phloem of trees suggest that adjustment with tissue water content plays an important role in osmolality dynamics. Furthermore, trees acclimated to dry and cold climate showed high phloem osmolality and raffinose proportion.Peer reviewe
Osmoregulatory Function of Large Vacuoles Found in Notochordal Cells of the Intervertebral Disc Running Title: An Osmoregulatory Vacuole
The nucleus pulposi of many species contain residual cells from the embryonic notochord, which exhibit a very unusual appearance (large vacuoles occupying ~80% of the cell volume, surrounded by an actin cytoskeleton). While the vacuoles have been qualitatively described, their composition and function has remained elusive. Given that these cells are believed to generate and experience significant osmotic pressures in both the notochord and intervertebral disc, we hypothesized that the vacuoles may serve as osmoregulatory organelles. Using both experimental and theoretical means, we demonstrated that the vacuoles contain a low-osmolality solution, generated via ion pumps on the vacuolar membrane. During hypotonic stress the vacuoles release their contents into the cytoplasm, diluting the cytoplasm and restoring the osmotic balance across the cell membrane. Thus the vacuoles function to regulate the cell volume and tonicity during rapid osmotic stress, protecting the cells from potentially damaging swelling pressures
Biophysical assessment of human aquaporin-7 as a water and glycerol channel in 3T3-L1 adipocytes
The plasma membrane aquaporin-7 (AQP7) has been shown to be expressed in adipose tissue and its role in glycerol release/uptake in adipocytes has been postulated and correlated with obesity onset. However, some studies have contradicted this view. Based on this situation, we have re-assessed the precise localization of AQP7 in adipose tissue and analyzed its function as a water and/or glycerol channel in adipose cells. Fractionation of mice adipose tissue revealed that AQP7 is located in both adipose and stromal vascular fractions. Moreover, AQP7 was the only aquaglyceroporin expressed in adipose tissue and in 3T3-L1 adipocytes. By overexpressing the human AQP7 in 3T3-L1 adipocytes it was possible to ascertain its role as a water and glycerol channel in a gain-of-function scenario. AQP7 expression had no effect in equilibrium cell volume but AQP7 loss of function correlated with higher triglyceride content. Furthermore it is also reported for the first time a negative correlation between water permeability and the cell non-osmotic volume supporting the observation that AQP7 depleted cells are more prone to lipid accumulation. Additionally, the strong positive correlation between the rates of water and glycerol transport highlights the role of AQP7 as both a water and a glycerol channel and reflects its expression levels in cells. In all, our results clearly document a direct involvement of AQP7 in water and glycerol transport, as well as in triglyceride content in adipocytes
High salt induced a delayed activation of human neutrophils
High salt (NaCl) concentrations are found in a number of tissues under physiological and pathological conditions. Here, we analyzed the effects induced by high salt on the function of human neutrophils. The culture of neutrophils in medium supplemented with high salt (50 mM NaCl) for short periods (30-120 min) inhibited the ability of conventional agonists to induce the production of IL-8 and the activation of respiratory burst. By contrast, exposure to high salt for longer periods (6-18 h) resulted in the activation of neutrophils revealed by the production of high levels of IL-8, the activation of the respiratory burst, and a marked synergistic effect on the production of TNF-α induced by LPS. Increasing osmolarity of the culture medium by the addition of sorbitol or mannitol (100 mM) was shown to be completely unable to stimulate neutrophil responses, suggesting that high sodium but not an increased osmolarity mediates the activation on neutrophils responses. A similar biphasic effect was observed when the function of monocytes was analyzed. Short term exposure to high salt suppressed IL-8 and TNF-α production induced by LPS while culture for longer periods triggered the production of IL-8 but not TNF-α in the absence of LPS stimulation. Contradictory results have been published regarding how high salt modulates neutrophil function. Our results suggest that the modulation of neutrophil function by high salt is strongly dependent on the exposure time.Fil: Mazzitelli, Ignacio Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Bleichmar, Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Melucci Ganzarain, Claudia del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Pereyra Gerber, Federico Pehuén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Toscanini, María Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Cuestas, María Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Erra Diaz, Fernando Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: Geffner, Jorge Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; Argentin
Sodium intake and hypertension
The close relationship between hypertension and dietary sodium intake is widely recognized and supported by several studies. A reduction in dietary sodium not only decreases the blood pressure and the incidence of hypertension, but is also associated with a reduction in morbidity and mortality from cardiovascular diseases. Prolonged modest reduction in salt intake induces a relevant fall in blood pressure in both hypertensive and normotensive individuals, irrespective of sex and ethnic group, with larger falls in systolic blood pressure for larger reductions in dietary salt. The high sodium intake and the increase in blood pressure levels are related to water retention, increase in systemic peripheral resistance, alterations in the endothelial function, changes in the structure and function of large elastic arteries, modification in sympathetic activity, and in the autonomic neuronal modulation of the cardiovascular system. In this review, we have focused on the effects of sodium intake on vascular hemodynamics and their implication in the pathogenesis of hypertensio
