148,096 research outputs found

    GaAs-based optoelectronic neurons

    Get PDF
    An integrated, optoelectronic, variable thresholding neuron implemented monolithically in GaAs integrated circuit and exhibiting high differential optical gain and low power consumption is presented. Two alternative embodiments each comprise an LED monolithically integrated with a detector and two transistors. One of the transistors is responsive to a bias voltage applied to its gate for varying the threshold of the neuron. One embodiment is implemented as an LED monolithically integrated with a double heterojunction bipolar phototransistor (detector) and two metal semiconductor field effect transistors (MESFET's) on a single GaAs substrate and another embodiment is implemented as an LED monolithically integrated with three MESFET's (one of which is an optical FET detector) on a single GaAs substrate. The first noted embodiment exhibits a differential optical gain of 6 and an optical switching energy of 10 pJ. The second embodiment has a differential optical gain of 80 and an optical switching energy of 38 pJ. Power consumption is 2.4 and 1.8 mW, respectively. Input 'light' power needed to turn on the LED is 2 micro-W and 54 nW, respectively. In both embodiments the detector is in series with a biasing MESFET and saturates the other MESFET upon detecting light above a threshold level. The saturated MESFET turns on the LED. Voltage applied to the biasing MESFET gate controls the threshold

    Optoelectronic Reservoir Computing

    Get PDF
    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.Comment: Contains main paper and two Supplementary Material

    A versatile scanning photocurrent mapping system to characterize optoelectronic devices based on 2D materials

    Full text link
    The investigation of optoelectronic devices based on two-dimensional materials and their heterostructures is a very active area of investigation with both fundamental and applied aspects involved. We present a description of a home-built scanning photocurrent microscope that we have designed and developed to perform electronic transport and optical measurements of two-dimensional materials based devices. The complete system is rather inexpensive (<10000 EUR) and it can be easily replicated in any laboratory. To illustrate the setup we measure current-voltage characteristics, in dark and under global illumination, of an ultra-thin PN junction formed by the stacking of an n-doped few-layer MoS2 flake onto a p-type MoS2 flake. We then acquire scanning photocurrent maps and by mapping the short circuit current generated in the device under local illumination we find that at zero bias the photocurrent is generated mostly in the region of overlap between the n-type and p-type flakes.Comment: 9 pages, 3 figures, 1 table, supporting informatio

    Cascaded transformerless DC-DC voltage amplifier with optically isolated switching devices

    Get PDF
    A very high voltage amplifier is provided in which plural cascaded banks of capacitors are switched by optically isolated control switches so as to be charged in parallel from the preceding stage or capacitor bank and to discharge in series to the succeeding stage or capacitor bank in alternating control cycles. The optically isolated control switches are controlled by a logic controller whose power supply is virtually immune to interference from the very high voltage output of the amplifier by the optical isolation provided by the switches, so that a very high voltage amplification ratio may be attained using many capacitor banks in cascade
    corecore