577,515 research outputs found
Computationally Efficient Optimization of a Five-Phase Flux-Switching PM Machine Under Different Operating Conditions
This paper investigates the comparative design optimizations of a five-phase outer-rotor flux-switching permanent magnet (FSPM) machine for in-wheel traction applications. To improve the comprehensive performance of the motor, two kinds of large-scale design optimizations under different operating conditions are performed and compared, including the traditional optimization performed at the rated operating point and the optimization targeting the whole driving cycles. Three driving cycles are taken into account, namely, the urban dynamometer driving schedule (UDDS), the highway fuel economy driving schedule (HWFET), and the combined UDDS/HWFET, representing the city, highway, and combined city/highway driving, respectively. Meanwhile, the computationally efficient finite-element analysis (CE-FEA) method, the cyclic representative operating points extraction technique, as well as the response surface methodology (in order to minimize the number of experiments when establishing the inverse machine model), are presented to reduce the computational effort and cost. From the results and discussion, it will be found that the optimization results against different operating conditions exhibit distinct characteristics in terms of geometry, efficiency, and energy loss distributions. For the traditional optimization performed at the rated operating point, the optimal design tends to reduce copper losses but suffer from high core losses; for UDDS, the optimal design tends to minimize both copper losses and PM eddy-current losses in the low-speed region; for HWFET, the optimal design tends to minimize core losses in the high-speed region; for the combined UDDS/HWFET, the optimal design tends to balance/compromise the loss components in both the low-speed and high-speed regions. Furthermore, the advantages of the adopted optimization methodologies versus the traditional procedure are highlighted
Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST) Plant
This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST) system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC) based on a steam turbine (ST). In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.This work has been carried out in the Intelligent Systems and Energy research group of the University of the Basque Country (UPV/EHU) and has been supported by the UFI11/28 research grant of the UPV/EHU and by the IT677-13 research grant of the Basque Government (Spain) and by DPI2012-37363-CO2-01 research grant of the Spanish Ministry of Economy and Competitiveness
Robust Transmissions in Wireless Powered Multi-Relay Networks with Chance Interference Constraints
In this paper, we consider a wireless powered multi-relay network in which a
multi-antenna hybrid access point underlaying a cellular system transmits
information to distant receivers. Multiple relays capable of energy harvesting
are deployed in the network to assist the information transmission. The hybrid
access point can wirelessly supply energy to the relays, achieving multi-user
gains from signal and energy cooperation. We propose a joint optimization for
signal beamforming of the hybrid access point as well as wireless energy
harvesting and collaborative beamforming strategies of the relays. The
objective is to maximize network throughput subject to probabilistic
interference constraints at the cellular user equipment. We formulate the
throughput maximization with both the time-switching and power-splitting
schemes, which impose very different couplings between the operating parameters
for wireless power and information transfer. Although the optimization problems
are inherently non-convex, they share similar structural properties that can be
leveraged for efficient algorithm design. In particular, by exploiting
monotonicity in the throughput, we maximize it iteratively via customized
polyblock approximation with reduced complexity. The numerical results show
that the proposed algorithms can achieve close to optimal performance in terms
of the energy efficiency and throughput.Comment: 14 pages, 8 figure
RF-MEMS switch actuation pulse optimization using Taguchi's method
Copyright @ 2011 Springer-VerlagReliability and longevity comprise two of the most important concerns when designing micro-electro-mechanical-systems (MEMS) switches. Forcing the switch to perform close to its operating limits underlies a trade-off between response bandwidth and fatigue life due to the impact force of the cantilever touching its corresponding contact point. This paper presents for first time an actuation pulse optimization technique based on Taguchi’s optimization method to optimize the shape of the actuation pulse of an ohmic RF-MEMS switch in order to achieve better control and switching conditions. Simulation results show significant reduction in impact velocity (which results in less than 5 times impact force than nominal step pulse conditions) and settling time maintaining good switching speed for the pull down phase and almost elimination of the high bouncing phenomena during the release phase of the switch
Pareto Boundary of the Rate Region for Single-Stream MIMO Interference Channels: Linear Transceiver Design
We consider a multiple-input multiple-output (MIMO) interference channel
(IC), where a single data stream per user is transmitted and each receiver
treats interference as noise. The paper focuses on the open problem of
computing the outermost boundary (so-called Pareto boundary-PB) of the
achievable rate region under linear transceiver design. The Pareto boundary
consists of the strict PB and non-strict PB. For the two user case, we compute
the non-strict PB and the two ending points of the strict PB exactly. For the
strict PB, we formulate the problem to maximize one rate while the other rate
is fixed such that a strict PB point is reached. To solve this non-convex
optimization problem which results from the hard-coupled two transmit
beamformers, we propose an alternating optimization algorithm. Furthermore, we
extend the algorithm to the multi-user scenario and show convergence. Numerical
simulations illustrate that the proposed algorithm computes a sequence of
well-distributed operating points that serve as a reasonable and complete inner
bound of the strict PB compared with existing methods.Comment: 16 pages, 9 figures. Accepted for publication in IEEE Tans. Signal
Process. June. 201
- …
