5,969 research outputs found

    Enveloping operads and bicoloured noncrossing configurations

    Get PDF
    An operad structure on certain bicoloured noncrossing configurations in regular polygons is studied. Motivated by this study, a general functorial construction of enveloping operad, with input a coloured operad and output an operad, is presented. The operad of noncrossing configurations is shown to be the enveloping operad of a coloured operad of bubbles. Several suboperads are also investigated, and described by generators and relations.Comment: 27 page

    On several varieties of cacti and their relations

    Full text link
    Motivated by string topology and the arc operad, we introduce the notion of quasi-operads and consider four (quasi)-operads which are different varieties of the operad of cacti. These are cacti without local zeros (or spines) and cacti proper as well as both varieties with fixed constant size one of the constituting loops. Using the recognition principle of Fiedorowicz, we prove that spineless cacti are equivalent as operads to the little discs operad. It turns out that in terms of spineless cacti Cohen's Gerstenhaber structure and Fiedorowicz' braided operad structure are given by the same explicit chains. We also prove that spineless cacti and cacti are homotopy equivalent to their normalized versions as quasi-operads by showing that both types of cacti are semi-direct products of the quasi-operad of their normalized versions with a re-scaling operad based on R>0. Furthermore, we introduce the notion of bi-crossed products of quasi-operads and show that the cacti proper are a bi-crossed product of the operad of cacti without spines and the operad based on the monoid given by the circle group S^1. We also prove that this particular bi-crossed operad product is homotopy equivalent to the semi-direct product of the spineless cacti with the group S^1. This implies that cacti are equivalent to the framed little discs operad. These results lead to new CW models for the little discs and the framed little discs operad.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol5/agt-5-13.abs.htm

    Swiss-Cheese operad and Drinfeld center

    Full text link
    We build a model in groupoids for the Swiss-Cheese operad, based on parenthesized permutations and braids, and we relate algebras over this model to the classical description of algebras over the homology of the Swiss-Cheese operad. We extend our model to a rational model for the Swiss-Cheese operad, and we compare it to the model that we would get if the operad Swiss-Cheese were formal.Comment: 27 pages. v5: Minor corrections. To appear in Israel J. Mat

    Constructing combinatorial operads from monoids

    Get PDF
    We introduce a functorial construction which, from a monoid, produces a set-operad. We obtain new (symmetric or not) operads as suboperads or quotients of the operad obtained from the additive monoid. These involve various familiar combinatorial objects: parking functions, packed words, planar rooted trees, generalized Dyck paths, Schr\"oder trees, Motzkin paths, integer compositions, directed animals, etc. We also retrieve some known operads: the magmatic operad, the commutative associative operad, and the diassociative operad.Comment: 12 page

    Derived bracket construction and Manin products

    Full text link
    We will extend the classical derived bracket construction to any algebra over a binary quadratic operad. We will show that the derived product construction is a functor given by the Manin white product with the operad of permutation algebras. As an application, we will show that the operad of prePoisson algebras is isomorphic to Manin black product of the Poisson operad with the preLie operad. We will show that differential operators and Rota-Baxter operators are, in a sense, Koszul dual to each other.Comment: This is the final versio
    corecore