208,168 research outputs found

    Drug-induced Parkinson's disease modulates protein kinase A and Olfactory Marker Protein in the mouse olfactory bulb

    Get PDF
    Background Olfaction is often affected in parkinsonian patients, but dopaminergic cells in the olfactory bulb are not affected by some Parkinson-inducing drugs. We investigated whether the drug MPTP produces the olfactory deficits typical of Parkinson and affects the olfactory bulb in mice. Findings Lesioned and control mice were tested for olfactory search, for motor and exploratory behavior. Brains and olfactory mucosa were investigated via immunohistochemistry for thyrosine hydroxylase, Olfactory Marker Protein and cyclic AMP-dependent protein kinase as an intracellular pathway involved in dopaminergic neurotransmission. MPTP induced motor impairment, but no deficit in olfactory search. Thyrosine hydroxylase did not differ in olfactory bulb, while a strong decrease was detected in substantia nigra and tegmentum of MPTP mice. Olfactory Marker Protein decreased in the olfactory bulb of MPTP mice, while a cyclic AMP-dependent protein kinase increased in the inner granular layer of MPTP mice. Conclusions MPTP mice do not present behavioural deficits in olfactory search, yet immunoreactivity reveals modifications in the olfactory bulb, and suggests changes in intracellular signal processing, possibly linked to neuron survival after MPTP

    Synaptophysin and synaptoporin expression in the developing rat olfactory system

    Get PDF
    The expressions of two closely related synaptic vesicle antigens synaptophysin and synaptoporin were examined in the olfactory system of the adult rat and during pre- and postnatal development. In the adult, immunocytochemistry showed that the continuously regenerating olfactory receptor neurons (primary neurons) produce both synaptophysin and synaptoporin which were localized in the cell bodies of the receptor neurons in the olfactory epithelium, their dendrites, axonal processes in the olfactory nerve and their terminals in the olfactory bulb glomeruli. Furthermore, ultrastructural analysis revealed synaptophysin- and synaptoporin-immunore activities associated with synaptic vesicles in most olfactory receptor axonal terminals impinging on dendrites of the mitral and tufted neurons (secondary neurons in the olfactory bulb circuitry) in the olfactory glomeruli. In like manner, tufted neurons, granule and periglomerular neurons (interneurons in the olfactory bulb circuitry) express both synaptophysin and synaptoporin. In contrast, mitral neurons expressed only the synaptophysin antigen which was likewise associated with mitral axonal terminals in their target the olfactory cortex. The patterns of synaptophysin and synaptoporin expressions in mitral neurons (synaptophysin only) and tufted neurons (synaptophysin and synaptoporin) were similar in prenatal, postnatal and adult rats as revealed by immunocytochemistry and in situ hybridization. However, the biosynthesis of synaptophysin and synaptoporin by granule and periglomerular neurons, olfactory bulb interneurons, occurred mainly postnatally

    Olfactory evaluation in obstructive sleep apnoea patients

    Get PDF
    The sense of smell has a high impact on the quality of life. The aim of the present study was to investigate olfactory dysfunction in patients with obstructive sleep apnoea syndrome (OSAS) and correlate the severity of disease with olfactory dysfunction. The relationships between nasal obstruction, nasal mucociliary cleareance and olfactory tests were also evaluated. Sixty patients with a diagnosis of OSAS were enrolled and underwent olfactory function evaluation. In all patients olfactory performance was tested with the Sniffin’ Sticks method. Mucociliary transport times and anterior rhinomanometry were performed to identify eventual nasal obstruction and deficits in nasal mucociliary clearance. Olfactory dysfunction was present in 22 (36.6%) patients of the study group: of these, hyposmia was present in 19 (86.4%) and anosmia in 3 (13.6%). The mean TDI score in the study group was 30. A strong correlation between the olfactory dysfunction and severity of sleep apnoea measured using the AHI was found. Patients with OSA would seem to have a high incidence of olfactory dysfunction. The degree of olfactory dysfunction appears to be related to the severity of disease. However, other co-factors such as nasal obstruction and reduced mucociliary clearance might also play a role in of the aetiology of this condition

    Functional morphology of the primary olfactory centers in the brain of the hermit crab Coenobita clypeatus (Anomala, Coenobitidae)

    No full text
    Terrestrial hermit crabs of the genus Coenobita display strong behavioral responses to volatile odors and are attracted by chemical cues of various potential food sources. Several aspects of their sense of aerial olfaction have been explored in recent years including behavioral aspects and structure of their peripheral and central olfactory pathway. Here, we use classical histological methods and immunohistochemistry against the neuropeptides orcokinin and allatostatin as well as synaptic proteins and serotonin to provide insights into the functional organization of their primary olfactory centers in the brain, the paired olfactory lobes. Our results show that orcokinin is present in the axons of olfactory sensory neurons, which target the olfactory lobe. Orcokinin is also present in a population of local olfactory interneurons, which may relay lateral inhibition across the array of olfactory glomeruli within the lobes. Extensive lateral connections of the glomeruli were also visualized using the histological silver impregnation method according to Holmes-Blest. This technique also revealed the structural organization of the output pathway of the olfactory system, the olfactory projection neurons, the axons of which target the lateral protocerebrum. Within the lobes, the course of their axons seems to be reorganized in an axon-sorting zone before they exit the system. Together with previous results, we combine our findings into a model on the functional organization of the olfactory system in these animals

    Chromogranin A in the olfactory system of the rat

    Get PDF
    The olfactory bulb of the rat contains chromogranin A at a similar level as the adrenal gland or the hypophysis as revealed by immunoblots. Olfactory chromogranin A also displays the same size as chromogranin A of endocrine cells. In the hippocampus and other brain regions, we could not detect chromogranin A by immunoblotting. In contrast, chromogranin A messenger ribonucleic acid (using S1 nuclease protection assays) was observed in all brain regions examined, including the olfactory bulb. By in situ hybridization histochemistry with a complementary ribonucleic acid probe (280 nucleotides), and by immunocytochemistry, chromogranin A synthesis could be localized to cell bodies of the mitral cell layer, of the external plexiform layer and of the periglomerular region of the olfactory bulb. Immunocytochemically, chromogranin A was also detected in the central projection areas of mitral and tufted cells in the primary olfactory cortex and the anterior amygdaloid area but not in the olfactory glomeruli, where the incoming olfactory nerve fibers of the primary olfactory neurons establish synaptic contacts. Taken together the data show that chromogranin A, following biosynthesis in the perikarya of the mitral and tufted cells, is specifically transported into their axonal terminals but not into their primary dendrites. We propose that the rat olfactory system could serve as a model for the study of chromogranin A regulation and function in neurons

    Olfactory Neuroblastoma: Diagnostic Difficulty

    Get PDF
    Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old ma

    The role of two anatomically separate olfactory bulbs in shark food odor tracking

    Full text link
    Most sharks have well-developed olfactory systems and depend to a large degree on odor information to locate food, home and navigate, and possibly detect predators and mates. The aim of this investigation is to determine the behavioral function of two paired bilateral olfactory bulbs in the smooth dogfish shark, Mustelus canis. The paired olfactory bulbs are a rare and unique feature among elasmobranchs and are absent in bony fishes. Given that the olfactory system of bony fishes contains lateral and medial nerve bundles with behavioral functions in feeding and social behavior respectively, we hypothesize that sharks have an elaborate functional division in which the medial bulb is processing social odors and the lateral bulb food odors. This functional division would parallel the division into an olfactory and an accessory olfactory system, also known as the vomeronasal organ or Jacobson’s organ, which evolved in tetrapods. Our study is based on the behavioral effects of selective transection of the two olfactory tracts to reveal how the brain is processing input from two anatomically distinct olfactory systems. The results show that animals with lateral tract transections showed impaired ability to track a food odor plume while those with medial transections showed no change. Attempts to identify a reliable social odor (pheromone) were not successful, preventing us from determining the deficits expected from medial tract lesions

    Olfactory cue use by three-spined sticklebacks foraging in turbid water: prey detection or prey location?

    Get PDF
    Foraging, when senses are limited to olfaction, is composed of two distinct stages: the detection of prey and the location of prey. While specialist olfactory foragers are able to locate prey using olfactory cues alone, this may not be the case for foragers that rely primarily on vision. Visual predators in aquatic systems may be faced with poor visual conditions such as natural or human-induced turbidity. The ability of visual predators to compensate for poor visual conditions by using other senses is not well understood, although it is widely accepted that primarily visual fish, such as three-spined sticklebacks, Gasterosteus aculeatus, can detect and use olfactory cues for a range of purposes. We investigated the ability of sticklebacks to detect the presence of prey and to locate prey precisely, using olfaction, in clear and turbid (two levels) water. When provided with only a visual cue, or only an olfactory cue, sticklebacks showed a similar ability to detect prey, but a combination of these cues improved their performance. In open-arena foraging trials, a dispersed olfactory cue added to the water (masking cues from the prey) improved foraging success, contrary to our expectations, whereas activity levels and swimming speed did not change as a result of olfactory cue availability. We suggest that olfaction functions to allow visual predators to detect rather than locate prey and that olfactory cues have an appetitive effect, enhancing motivation to forage

    The Olfactory Nervous System Of Terrestrial And Aquatic Vertebrates

    Get PDF
    Animals in their natural milieu are surrounded by odors. These odors are rich source of information, and are perceived by sophisticated olfactory systems, that have evolved over time. The sense of smell helps species to localize prey, evade predators, explore food and recognize viable mates. In humans, memoirs, thoughts, emotions, and associations are more readily reached through the sense of smell than through any other channel. This suggests that olfactory processing is imperative and may differ fundamentally from processing in other sensory modalities. The molecular age in olfaction initiated in 1991 with the significant discovery of a large, multigene family of olfactory receptors in rat by Linda Buck and Richard Axel (Buck and Axel, 1991). The first cloned olfactory receptors consisted of a diverse repertoire of G-protein coupled receptors (GPCRs) with seven-trans membrane topology, and they were sparsely expressed in the olfactory epithelium. This Nobel Prize worthy pioneering discovery, together with availability of modern techniques and numerous completely sequenced genomes opened the way to characterize the gene families of olfactory receptors through exhaustive computational data mining in different species genome as well as by in vitro biology. In this review, I will explain about the two main model organism of olfactory perceptions, zebrafish and mouse
    corecore