39,074 research outputs found
Perceived synchronization of olfactory multimedia
This is the post-print version of this Article. The official published version can be accessed from the link below - Copyright @ 2010 IEEEThe concept of synchronization is of fundamental importance in multimedia systems and applications. The focus of this this paper is on olfaction-enhanced multimedia, which concerns itself with associating computer-generated smell with other media. However, the lingering nature of smell, as opposed to the transitory nature of other media objects that multimedia applications are accustomed to, such as video and audio, means that specific attention needs to be given when synchronizing other media content with olfactory data. Consequently, this paper presents the results of an experimental study carried out to explore and investigate the temporal boundaries within which olfactory-data output in an olfaction-enhanced multimedia application can be successfully synchronized with other media objects from an end-user perspective. Results show the presence of two main synchronization regions, and that olfaction ahead of audiovisual content is more tolerable than olfaction behind content
Synchronization of Olfaction-enhanced multimedia
This paper presents the results of an experimental study carried out to explore, from an end user perspective, the temporal boundaries within which olfactory data can be used to enhance multimedia applications. Results show the presence of two main synchronization regions, and that olfaction ahead of audiovisual content is more tolerable than olfaction behind content
A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila
Conclusions: Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction
Olfaction in mosquitoes
Female mosquitoes are vectors of diseases, affecting both livestock and humans. The host-seeking and identification behaviors of mosquitoes are mediated mainly by olfactory cues. The peripheral olfactory organs of mosquitoes which perceive olfactory cues are the antennae and maxillary palps. These appendages bear numerous hair shaped structures, sensilla, in which olfactory receptor neurons (ORNs) are housed. The ORNs detect and discriminate various odorant molecules and send information regarding odor quality, quantity and spatio-temporal patterns to the central olfactory system in the brain for further analysis. The first goal of this study was to investigate the neuroanatomy of the mosquito central olfactory system. Using different staining techniques, the neuronal architecture of the deutocerebrum as well as 3D reconstructions of antennal lobe (AL) glomeruli were depicted for both sexes of the Afrcian malaria mosquito, Anopheles gambiae and the yellow fever mosquito, Aedes aegypti. To study how mosquitoes detect olfactory cues, single sensillum recordings (SSRs) were performed, which allowed me to investigate electrophysiological properties of individual ORNs housed in four morphological types of the most abundant olfactory sensilla, s. trichodea. I was able to identify 11 functional types which their ORNs displayed distinct responses to a set of compounds. As part of this study, axons of functionally defined ORNs were traced by neurobiotin to indicate which glomeruli they targeted. This resulted in a functional map of AL glomeruli. The map indicated that different functional types of ORNs converged onto different spatially fixed glomeruli. My next step was to identify novel biologically active compounds for the ORNs using gas chromatography coupled SSRs (GC-SSRs). Headspace odors from different human body parts, i.e. armpit, feet and trunk regions as well as from a plant used as a mosquito repellent (Nepeta faassenii) were collected, extracted and eventually injected onto the GC-column. I found that some of the extract components elicited responses in previously defined ORNs as well as in ORNs of the intermediate sensilla. Some of the compounds, which were subsequently identified by using GC-mass spectrometry (GC-MS) were heptanal, octanal, nonanal and decanal
The sweet smell of success: Enhancing multimedia applications with olfaction
This is the Post-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ACMOlfaction, or smell, is one of the last challenges which multimedia applications have to conquer. As far as computerized smell is concerned, there are several difficulties to overcome, particularly those associated with the ambient nature of smell. In this article, we present results from an empirical study exploring users' perception of olfaction-enhanced multimedia displays. Findings show that olfaction significantly adds to the user multimedia experience. Moreover, use of olfaction leads to an increased sense of reality and relevance. Our results also show that users are tolerant of the interference and distortion effects caused by olfactory effect in multimedia
Up the nose of the beholder? Aesthetic perception in olfaction as a decision-making process
Is the sense of smell a source of aesthetic perception? Traditional philosophical aesthetics has centered on vision and audition but eliminated smell for its subjective and inherently affective character. This article dismantles the myth that olfaction is an unsophisticated sense. It makes a case for olfactory aesthetics by integrating recent insights in neuroscience with traditional expertise about flavor and fragrance assessment in perfumery and wine tasting. My analysis concerns the importance of observational refinement in aesthetic experience. I argue that the active engagement with stimulus features in perceptual processing shapes the phenomenological content, so much so that the perceptual structure of trained smelling varies significantly from naive smelling. In a second step, I interpret the processes that determine such perceptual refinement in the context of neural decision-making processes, and I end with a positive outlook on how research in neuroscience can be used to benefit philosophical aesthetics
Perceiving Smellscapes
We perceive smells as perduring complex entities within a distal array that might be conceived of as smellscapes. However, the philosophical orthodoxy of Odor Theories has been to deny that smells are perceived as having a distal location. Recent challenges have been mounted to Odor Theories’ veracity in handling the timescale of olfactory perception, how it individuates odors as a distal entities, and their claim that olfactory perception is not spatial. The paper does not aim to dispute these criticisms. Rather, what will be shown is that Molecular Structure Theory, a refinement of Odor Theory, can be further developed to handle these challenges. The theory is further refined by focusing on distal perception that requires considering the perceptual object as mereologically complex persisting odor against a background scene conceived of as a smellscape. What will be offered is an expansion of Molecular Structure Theory to account for distal smell perception within natural environments
Beyond multimedia adaptation: Quality of experience-aware multi-sensorial media delivery
Multiple sensorial media (mulsemedia) combines multiple media elements which engage three or more of human senses, and as most other media content, requires support for delivery over the existing networks. This paper proposes an adaptive mulsemedia framework (ADAMS) for delivering scalable video and sensorial data to users. Unlike existing two-dimensional joint source-channel adaptation solutions for video streaming, the ADAMS framework includes three joint adaptation dimensions: video source, sensorial source, and network optimization. Using an MPEG-7 description scheme, ADAMS recommends the integration of multiple sensorial effects (i.e., haptic, olfaction, air motion, etc.) as metadata into multimedia streams. ADAMS design includes both coarse- and fine-grained adaptation modules on the server side: mulsemedia flow adaptation and packet priority scheduling. Feedback from subjective quality evaluation and network conditions is used to develop the two modules. Subjective evaluation investigated users' enjoyment levels when exposed to mulsemedia and multimedia sequences, respectively and to study users' preference levels of some sensorial effects in the context of mulsemedia sequences with video components at different quality levels. Results of the subjective study inform guidelines for an adaptive strategy that selects the optimal combination for video segments and sensorial data for a given bandwidth constraint and user requirement. User perceptual tests show how ADAMS outperforms existing multimedia delivery solutions in terms of both user perceived quality and user enjoyment during adaptive streaming of various mulsemedia content. In doing so, it highlights the case for tailored, adaptive mulsemedia delivery over traditional multimedia adaptive transport mechanisms
Integrating Olfaction in a Robotic Telepresence Loop
In this work we propose enhancing a typical
robotic telepresence architecture by considering olfactory and wind flow information in addition to the common audio and video channels. The objective is to expand the range of applications where robotics telepresence can be applied, including those related to the detection of volatile chemical substances (e.g. land-mine detection, explosive deactivation, operations
in noxious environments, etc.). Concretely, we analyze how the sense of smell can be integrated in the telepresence loop, covering the digitization of the gases and wind flow
present in the remote environment, the transmission through
the communication network, and their display at the user location. Experiments under different environmental conditions are presented to validate the proposed telepresence system when
localizing a gas emission leak at the remote environment.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Olfactory cue use by three-spined sticklebacks foraging in turbid water: prey detection or prey location?
Foraging, when senses are limited to olfaction, is composed of two distinct stages: the detection of prey and the location of prey. While specialist olfactory foragers are able to locate prey using olfactory cues alone, this may not be the case for foragers that rely primarily on vision. Visual predators in aquatic systems may be faced with poor visual conditions such as natural or human-induced turbidity. The ability of visual predators to compensate for poor visual conditions by using other senses is not well understood, although it is widely accepted that primarily visual fish, such as three-spined sticklebacks, Gasterosteus aculeatus, can detect and use olfactory cues for a range of purposes. We investigated the ability of sticklebacks to detect the presence of prey and to locate prey precisely, using olfaction, in clear and turbid (two levels) water. When provided with only a visual cue, or only an olfactory cue, sticklebacks showed a similar ability to detect prey, but a combination of these cues improved their performance. In open-arena foraging trials, a dispersed olfactory cue added to the water (masking cues from the prey) improved foraging success, contrary to our expectations, whereas activity levels and swimming speed did not change as a result of olfactory cue availability. We suggest that olfaction functions to allow visual predators to detect rather than locate prey and that olfactory cues have an appetitive effect, enhancing motivation to forage
- …
