627,294 research outputs found
Stochastically Resilient Observer Design for a Class of Continuous-Time Nonlinear Systems
This work addresses the design of stochastically resilient or non-fragile continuous-time Luenberger observers for systems with incrementally conic nonlinearities. Such designs maintain the convergence and/or performance when the observer gain is erroneously implemented due possibly to computational errors i.e. round off errors in computing the observer gain or changes in the observer parameters during operation. The error in the observer gain is modeled as a random process and a common linear matrix inequality formulation is presented to address the stochastically resilient observer design problem for a variety of performance criteria. Numerical examples are given to illustrate the theoretical results
Performance limitations of observer-based feedback for transient energy growth suppression
Transient energy growth suppression is a common control objective for
feedback flow control aimed at delaying transition to turbulence. A prevailing
control approach in this context is observer-based feedback, in which a
full-state feedback controller is applied to state estimates from an observer.
The present study identifies a fundamental performance limitation of
observer-based feedback control: whenever the uncontrolled system exhibits
transient energy growth in response to optimal disturbances, control by
observer-based feedback will necessarily lead to transient energy growth in
response to optimal disturbances for the closed-loop system as well. Indeed,
this result establishes that observer-based feedback can be a poor candidate
for controller synthesis in the context of transient energy growth suppression
and transition delay: the performance objective of transient energy growth
suppression can never be achieved by means of observer-based feedback. Further,
an illustrative example is used to show that alternative forms of output
feedback are not necessarily subject to these same performance limitations, and
should also be considered in the context of transient energy growth suppression
and transition control.Comment: 7 pages; 1 figur
Chaos-based communication scheme using proportional and proportional-integral observers
In this paper, we propose a new chaos-based communication scheme using the observers. The novelty lies in the masking procedure that is employed to hide the confidential information using the chaotic oscillator. We use a combination of the addition and inclusion methods to mask the information. The performance of two observers, the proportional observer (P-observer) and the proportional integral observer (PI-observer) is compared that are employed as receivers for the proposed communication scheme. We show that the P-observer is not suitable scheme since it imposes unpractical constraints on the messages to be transmitted. On the other hand, we show that the PI-observer is the better solution because it allows greater flexibility in choosing the gains of the observer and does not impose any unpractical restrictions on the message
Gradient-like observer design on the Special Euclidean group SE(3) with system outputs on the real projective space
A nonlinear observer on the Special Euclidean group for full
pose estimation, that takes the system outputs on the real projective space
directly as inputs, is proposed. The observer derivation is based on a recent
advanced theory on nonlinear observer design. A key advantage with respect to
existing pose observers on is that we can now incorporate in a
unique observer different types of measurements such as vectorial measurements
of known inertial vectors and position measurements of known feature points.
The proposed observer is extended allowing for the compensation of unknown
constant bias present in the velocity measurements. Rigorous stability analyses
are equally provided. Excellent performance of the proposed observers are shown
by means of simulations
Energy-efficient control of pump units based on neural-network parameter observer
An observer based on an artificial neural network was designed. The observer determines the pumping unit performance depending on the operating point. Determination is based on the measured technological coordinates of the system and the pressure of the turbomechanism. Three neural networks were designed for three types of the productivity observer. The developed observer was investigated by the simulation method within different variations of disturbing actions, such as hydraulic resistance of the hydraulic system and geodetic pressure. A comparative analysis of three types of the productivity observer, built with using the pressure and different signals of the system with arbitrary change of hydraulic resistance was given. By the use of the pump unit efficiency observer, in addition to the results presented earlier, the efficiency of the productivity observer, which built with using different sensors, in water supply systems with two series-connected pump units, operating for filling the large tank, is researched. In the water supply system one pump speed is regulated, the other is unregulated. References 14, figures 5
Adaptive sliding mode observers in uncertain chaotic cryptosystems with a relaxed matching condition
We study the performance of adaptive sliding mode observers in chaotic synchronization and communication in the presence of uncertainties. The proposed robust adaptive observer-based synchronization is used for cryptography based on chaotic masking modulation (CM). Uncertainties are intentionally injected into the chaotic dynamical system to achieve higher security and we use robust sliding mode observer design methods for the uncertain nonlinear dynamics. In addition, a relaxed matching condition is introduced to realize the robust observer design. Finally, a Lorenz system is employed as an illustrative example to demonstrate the effectiveness and feasibility of the proposed cryptosyste
A passivity approach to controller-observer design for robots
Passivity-based control methods for robots, which achieve the control objective by reshaping the robot system's natural energy via state feedback, have, from a practical point of view, some very attractive properties. However, the poor quality of velocity measurements may significantly deteriorate the control performance of these methods. In this paper the authors propose a design strategy that utilizes the passivity concept in order to develop combined controller-observer systems for robot motion control using position measurements only. To this end, first a desired energy function for the closed-loop system is introduced, and next the controller-observer combination is constructed such that the closed-loop system matches this energy function, whereas damping is included in the controller- observer system to assure asymptotic stability of the closed-loop system. A key point in this design strategy is a fine tuning of the controller and observer structure to each other, which provides solutions to the output-feedback robot control problem that are conceptually simple and easily implementable in industrial robot applications. Experimental tests on a two-DOF manipulator system illustrate that the proposed controller-observer systems enable the achievement of higher performance levels compared to the frequently used practice of numerical position differentiation for obtaining a velocity estimat
- …
