1,178,317 research outputs found
Exercise Does Not Effect Context-dependent Episodic Memory
Memory has been shown to be strongly associated with the context in which it is encoded, suggesting that the context is central to the memory itself. However, the effect of exercise on context dependent object recognition is not fully known. We then set out to investigate the effect of exercise on context dependent object recognition. In Experiment 1 we showed that a context change reduced object recognition memory but did not significantly disrupt object recognition. In Experiment 2 we assessed whether exercise would the mitigate the effect of context change. We showed that exercise does not significantly improve object recognition nor did it mitigate the effect of context change on object recognition. These results suggest that a discrete context change can significantly disrupt retrieval of object recognition memory. Our results do not agree with the body of literature related to this topic, so further inquisition into these effects should be undertaken to confirm or refute the impact of exercise on contextual object recognition
Monocular SLAM Supported Object Recognition
In this work, we develop a monocular SLAM-aware object recognition system
that is able to achieve considerably stronger recognition performance, as
compared to classical object recognition systems that function on a
frame-by-frame basis. By incorporating several key ideas including multi-view
object proposals and efficient feature encoding methods, our proposed system is
able to detect and robustly recognize objects in its environment using a single
RGB camera in near-constant time. Through experiments, we illustrate the
utility of using such a system to effectively detect and recognize objects,
incorporating multiple object viewpoint detections into a unified prediction
hypothesis. The performance of the proposed recognition system is evaluated on
the UW RGB-D Dataset, showing strong recognition performance and scalable
run-time performance compared to current state-of-the-art recognition systems.Comment: Accepted to appear at Robotics: Science and Systems 2015, Rome, Ital
Hydrodynamic object recognition using pressure sensing
Hydrodynamic sensing is instrumental to fish and some amphibians. It also represents, for underwater vehicles, an alternative way of sensing the fluid environment when visual and acoustic sensing are limited. To assess the effectiveness of hydrodynamic sensing and gain insight into its capabilities and limitations, we investigated the forward and inverse problem of detection and identification, using the hydrodynamic pressure in the neighbourhood, of a stationary obstacle described using a general shape representation. Based on conformal mapping and a general normalization procedure, our obstacle representation accounts for all specific features of progressive perceptual hydrodynamic imaging reported experimentally. Size, location and shape are encoded separately. The shape representation rests upon an asymptotic series which embodies the progressive character of hydrodynamic imaging through pressure sensing. A dynamic filtering method is used to invert noisy nonlinear pressure signals for the shape parameters. The results highlight the dependence of the sensitivity of hydrodynamic sensing not only on the relative distance to the disturbance but also its bearing
Deep Affordance-grounded Sensorimotor Object Recognition
It is well-established by cognitive neuroscience that human perception of
objects constitutes a complex process, where object appearance information is
combined with evidence about the so-called object "affordances", namely the
types of actions that humans typically perform when interacting with them. This
fact has recently motivated the "sensorimotor" approach to the challenging task
of automatic object recognition, where both information sources are fused to
improve robustness. In this work, the aforementioned paradigm is adopted,
surpassing current limitations of sensorimotor object recognition research.
Specifically, the deep learning paradigm is introduced to the problem for the
first time, developing a number of novel neuro-biologically and
neuro-physiologically inspired architectures that utilize state-of-the-art
neural networks for fusing the available information sources in multiple ways.
The proposed methods are evaluated using a large RGB-D corpus, which is
specifically collected for the task of sensorimotor object recognition and is
made publicly available. Experimental results demonstrate the utility of
affordance information to object recognition, achieving an up to 29% relative
error reduction by its inclusion.Comment: 9 pages, 7 figures, dataset link included, accepted to CVPR 201
A correspondence-based neural mechanism for position invariant feature processing
Poster presentation: Introduction We here focus on constructing a hierarchical neural system for position-invariant recognition, which is one of the most fundamental invariant recognition achieved in visual processing [1,2]. The invariant recognition have been hypothesized to be done by matching a sensory image of a particular object stimulated on the retina to the most suitable representation stored in memory of the higher visual cortical area. Here arises a general problem: In such a visual processing, the position of the object image on the retina must be initially uncertain. Furthermore, the retinal activities possessing sensory information are being far from the ones in the higher area with a loss of the sensory object information. Nevertheless, with such recognition ambiguity, the particular object can effortlessly and easily be recognized. Our aim in this work is an attempt to resolve such a general recognition problem. ..
The scene superiority effect: object recognition in the context of natural scenes
Four experiments investigate the effect of background scene semantics on object recognition. Although past research has found that semantically consistent scene backgrounds can facilitate recognition of a target object, these claims have been challenged as the result of post-perceptual response bias rather than the perceptual processes of object recognition itself. The current study takes advantage of a paradigm from linguistic processing known as the Word Superiority Effect. Humans can better discriminate letters (e.g., D vs. K) in the context of a word (WORD vs. WORK) than in a non-word context (e.g., WROD vs. WROK) even when the context is non-predictive of the target identity. We apply this paradigm to objects in natural scenes, having subjects discriminate between objects in the context of scenes. Because the target objects were equally semantically consistent with any given scene and could appear in either semantically consistent or inconsistent contexts with equal probability, response bias could not lead to an apparent improvement in object recognition. The current study found a benefit to object recognition from semantically consistent backgrounds, and the effect appeared to be modulated by awareness of background scene semantics
On Recognizing Transparent Objects in Domestic Environments Using Fusion of Multiple Sensor Modalities
Current object recognition methods fail on object sets that include both
diffuse, reflective and transparent materials, although they are very common in
domestic scenarios. We show that a combination of cues from multiple sensor
modalities, including specular reflectance and unavailable depth information,
allows us to capture a larger subset of household objects by extending a state
of the art object recognition method. This leads to a significant increase in
robustness of recognition over a larger set of commonly used objects.Comment: 12 page
- …
