50,755 research outputs found
DADA: data assimilation for the detection and attribution of weather and climate-related events
A new nudging method for data assimilation, delay‐coordinate nudging, is presented. Delay‐coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a low‐order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delay‐nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay‐coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal‐to‐decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures
WRF-Model Data Assimilation Studies of Landfalling Atmospheric Rivers and Orographic Precipitation Over Northern California
In this study, data assimilation methods of 3-D variational analysis (3DVAR), observation nudging, and analysis (grid) nudging were evaluated in the Weather Research and Forecasting (WRF) model for a high-impact, multi-episode landfalling atmospheric river (AR) event for Northern California from 28 November to 3 December, 2012. Eight experiments were designed to explore various combinations of the data assimilation methods and different initial conditions. The short-to-medium range quantitative precipitation forecast (QPF) performances were tested for each experiment. Surface observations from the National Oceanic and Atmospheric Administration\u27s (NOAA) Hydrometeorology Network (HMT), National Weather Service (NWS) radiosondes, and GPS Radio Occultation (RO) vertical profiles from the Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) satellites were used for assimilation. Model results 2.5 days into the forecast showed slower timing of the 2nd AR episode by a few hours and an underestimation in AR strength. For the entire event forecasts, the non-grid-nudging experiments showed the lowest mean absolute error (MAE) for rainfall accumulations, especially those with 3DVAR. Higher-resolution initial conditions showed more realistic coastal QPFs. Also, a 3-h nudging time interval and time window for observation nudging and 3DVAR, respectively, may be too large for this type of event, and it did not show skill until 60-66 h into the forecast
Continuous data assimilation with blurred-in-time measurements of the surface quasi-geostrophic equation
An intrinsic property of almost any physical measuring device is that it
makes observations which are slightly blurred in time. We consider a
nudging-based approach for data assimilation that constructs an approximate
solution based on a feedback control mechanism that is designed to account for
observations that have been blurred by a moving time average. Analysis of this
nudging model in the context of the subcritical surface quasi-geostrophic
equation shows, provided the time-averaging window is sufficiently small and
the resolution of the observations sufficiently fine, that the approximating
solution converges exponentially fast to the observed solution over time. In
particular, we demonstrate that observational data with a small blur in time
possess no significant obstructions to data assimilation provided that the
nudging properly takes the time averaging into account. Two key ingredients in
our analysis are additional boundedness properties for the relevant interpolant
observation operators and a non-local Gronwall inequality.Comment: 44 page
Effects of atmospheric sphericity on stratospheric chemistry and dynamics over Antarctica
Atmospheric sphericity is an important factor that must be considered in order to evaluate an accurate ozone loss rate in the polar stratosphere. The built-in plane-parallel radiative transfer scheme of a nudging chemical transport model (CTM) and an atmospheric general circulation model (AGCM) with coupled chemistry is modified by a pseudospherical approximation. The plane-parallel atmosphere radiative transfer version (PPA version) is compared with the pseudospherical atmosphere radiative transfer version (SA version) for both the nudging CTM and AGCM. The nudging CTM can isolate the chemical effects for a given dynamical field, while the interaction among the chemical, radiative, and dynamical processes can be studied with the AGCM. The present analysis focuses on Antarctica during an ozone hole period. In the ozone loss period over Antarctica, ozone starts to decrease earlier and minimum value of total ozone becomes lower in the SA versions of both the nudging CTM and the AGCM than in the corresponding PPA versions. The ozone mixing ratio decreases earlier in the SA version because of an earlier increase of ClO concentration initiated by the upward actinic flux at solar zenith angles greater than 90°. Dynamics plays an important role as well as the chemical processes. During the ozone recovery period, the ozone distribution becomes almost the same in the SA and PPA versions of the nudging CTM, while in the AGCM the ozone amount in the SA version remains at lower values compared to those of the PPA version. In the AGCM, a decrease of ozone over Antarctica enhances the latitudinal gradient of temperature and thus strengthens the polar vortex in the SA version. A resultant delay of the polar vortex breakup causes the delay of the ozone recovery. For the AGCM, ensemble runs are performed. The ensemble experiment exhibits large ozone variances after the middle of December, when the ozone recovery is dynamically controlled. Most ensemble members of the AGCM show a delay of the polar vortex breakup in the SA version, while a few members show opposite results. In the latter members, the polar vortex breakup is strongly affected by the enhanced EP flux from the troposphere around 100 hPa, which causes the variances in the ozone recovery period. Most members, however, do not show large statistical variances; that justifies the conclusions from the ensemble means
Efficient dynamical downscaling of general circulation models using continuous data assimilation
Continuous data assimilation (CDA) is successfully implemented for the first
time for efficient dynamical downscaling of a global atmospheric reanalysis. A
comparison of the performance of CDA with the standard grid and spectral
nudging techniques for representing long- and short-scale features in the
downscaled fields using the Weather Research and Forecast (WRF) model is
further presented and analyzed. The WRF model is configured at 25km horizontal
resolution and is driven by 250km initial and boundary conditions from
NCEP/NCAR reanalysis fields. Downscaling experiments are performed over a
one-month period in January, 2016. The similarity metric is used to evaluate
the performance of the downscaling methods for large and small scales.
Similarity results are compared for the outputs of the WRF model with different
downscaling techniques, NCEP reanalysis, and Final Analysis. Both spectral
nudging and CDA describe better the small-scale features compared to grid
nudging. The choice of the wave number is critical in spectral nudging;
increasing the number of retained frequencies generally produced better
small-scale features, but only up to a certain threshold after which its
solution gradually became closer to grid nudging. CDA maintains the balance of
the large- and small-scale features similar to that of the best simulation
achieved by the best spectral nudging configuration, without the need of a
spectral decomposition. The different downscaled atmospheric variables,
including rainfall distribution, with CDA is most consistent with the
observations. The Brier skill score values further indicate that the added
value of CDA is distributed over the entire model domain. The overall results
clearly suggest that CDA provides an efficient new approach for dynamical
downscaling by maintaining better balance between the global model and the
downscaled fields
Application of a nudging technique to thermoacoustic tomography
ThermoAcoustic Tomography (TAT) is a promising, non invasive, medical imaging
technique whose inverse problem can be formulated as an initial condition
reconstruction. In this paper, we introduce a new algorithm originally designed
to correct the state of an evolution model, the \emph{back and forth nudging}
(BFN), for the TAT inverse problem. We show that the flexibility of this
algorithm enables to consider a quite general framework for TAT. The backward
nudging algorithm is studied and a proof of the geometrical convergence rate of
the BFN is given. A method based on Conjugate Gradient (CG) is also introduced.
Finally, numerical experiments validate the theoretical results with a better
BFN convergence rate for more realistic setups and a comparison is established
between BFN, CG and a usual inversion method.Comment: Preprint version of the articl
The role of the sea-surface temperature distribution on numerically simulated cyclogenesis during ERICA
The goal was to quantify the extent to which a sea surface temperature (SST) front can influence cyclogenesis. The approach was to use the Drexel Limited-Area Mesoscale Prediction System (LAMPS) dynamical model to simulate cyclogenesis over various SST fields. Research during the past year focused on the development and testing of a four dimensional data assimilation (FDDA) technique within LAMPS. The technique is a continuous dynamical assimilation where forcing terms are added to the governing model equations to gradually nudge the model solution toward a gridded analysis. Here, the nudging is used as a dynamic initialization tool during a 12 hour preforecast to generate model balanced initial conditions for a subsequent 24 hour numerical prediction. Tests were performed to determine which variables to nudge and how to specify the four dimensional weighting function used to scale the nudging terms. To date, optimal results were obtained by nudging the u and v components of the wind along with the potential temperature. The weighting function ranged from 0 to 1 and varies in time as a quadratic polynomial. It was initialized at 0, reached its maximum at 9 hours into the preforecast, and fell back at 0 to 12 hours. The nudging terms are included in the model equations for all grid points except those within the model predicted oceanic boundary layer. This design attempts to confine changes imposed by the specified SST field to the oceanic boundary layer during the preforecast period
Nudging and obesity : how to get rid of paternalism?
This paper reflects upon the conditions how ‘nudging’ can change individual health choices without being paternalistic and therefore can be defined as an instrument of social justice? So many problems we are facing in today’s nursing are situated at the intersection of autonomy and heteronomy, i.e. why well informed and autonomous people make unhealthy lifestyle choices. If people do not choose what they want, this is not simply caused by their lack of character or capability, but also by the fact that absolute autonomy is impossible; also autonomous individuals are ‘contaminated’ by heteronymous aspects, by influences from ‘outside’. In an earlier article I made an analysis of my neologism 'oughtonomy' to support the thesis that when it comes down to human existence, autonomy and heteronomy are intertwined, more than they are merely opposites. Although nudging might be of help in many nursing settings, we should evaluate it with the same criticism as we judge upon paternalism. Despite the potential of nudging for nursing, there is a risk to put the nurse again in the position of the paternalistic outsider who knows how people should behave. But maybe the awareness of the oughtonomous decisions we all make in our lives, can help us to understand why people act mindless in some situations or why we choose what we choose. Knowing this is one thing, giving people the authority of an expert to know what is better off for others, another. Despite the potential of the last, the former concept does not legitimate paternalistic interferences in patient’s lifestyle
- …
