911,785 research outputs found

    Exposure of Nuclear Track Emulsion to a Mixed Beam of Relativistic 12^{12}N, 10^{10}C, and 7^7Be Nuclei

    Full text link
    A nuclear track emulsion was exposed to a mixed beam of relativistic 12^{12}N, 10^{10}C, and 7^7Be nuclei having a momentum of 2 GeV/cc per nucleon. The beam was formed upon charge exchange processes involving 12^{12}C primary nuclei and their fragmentation. An analysis indicates that 10^{10}C nuclei are dominant in the beam and that 12^{12}N nuclei are present in it. The charge topology of relativistic fragments in the coherent dissociation of these nuclei is presented.Comment: ISSN 1063-7788, Pleiades Publishing, Ltd., 201

    Nuclear masses, deformations and shell effects

    Get PDF
    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei regionComment: 10 pages, 8 tables, Proc. of the XXXIV Nuclear Physics Symposium, January 4-7 2011, Cocoyoc, Morelos, Mexico. IOP Journal of Physics: Conference Series (in press

    Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation

    Full text link
    The size of nuclei in histological preparations from excised breast tumors is predictive of patient outcome (large nuclei indicate poor outcome). Pathologists take into account nuclear size when performing breast cancer grading. In addition, the mean nuclear area (MNA) has been shown to have independent prognostic value. The straightforward approach to measuring nuclear size is by performing nuclei segmentation. We hypothesize that given an image of a tumor region with known nuclei locations, the area of the individual nuclei and region statistics such as the MNA can be reliably computed directly from the image data by employing a machine learning model, without the intermediate step of nuclei segmentation. Towards this goal, we train a deep convolutional neural network model that is applied locally at each nucleus location, and can reliably measure the area of the individual nuclei and the MNA. Furthermore, we show how such an approach can be extended to perform combined nuclei detection and measurement, which is reminiscent of granulometry.Comment: Conditionally accepted for MICCAI 201

    Properties of H II Regions in the Centers of Nearby Galaxies

    Get PDF
    As part of an optical spectroscopic survey of nearby, bright galaxies, we have identified a sample of over 200 emission-line nuclei having optical spectra resembling those of giant extragalactic H II regions. Such "H II nuclei," powered by young, massive stars, are found in a substantial fraction of nearby galaxies, especially those of late Hubble type. This paper summarizes the observational characteristics of H II nuclei, contrasts the variation of their properties with Hubble type, and compares the nuclear H II regions with those found in galaxy disks. Similarities and differences between H II nuclei and luminous starburst nuclei are additionally noted.Comment: To appear in the Astrophysical Journal. LaTex, 37 pages including 15 postscript figures. AAStex macros include

    Simulation of Light Antinucleus-Nucleus Interactions

    Full text link
    Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To support the experimental studies of the anti-nuclei a Monte Carlo simulation of anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The implementation combines practically all known theoretical approaches to the problem of antinucleon-nucleon interactions.Comment: 8 pages, 5 figure

    Probing the gateway to superheavy nuclei in cranked relativistic Hartree-Bogoliubov theory

    Get PDF
    The cranked relativistic Hartree+Bogoliubov theory has been applied for a systematic study of the nuclei around 254No, the heaviest nuclei for which detailed spectroscopic data are available. The deformation, rotational response, pairing correlations, quasi-particle and other properties of these nuclei have been studied with different relativistic mean field (RMF) parametrizations. For the first time, the quasi-particle spectra of odd deformed nuclei have been calculated in a fully self-consistent way within the framework of the RMF theory. The energies of the spherical subshells, from which active deformed states of these nuclei emerge, are described with an accuracy better than 0.5 MeV for most of the subshells with the NL1 and NL3 parametrizations. However, for a few subshells the discrepancy reach 0.7-1.0 MeV. The implications of these results for the study of superheavy nuclei are discussed.Comment: 7 pages, 3 figures, Proceedings of the Conference on Frontiers of Nuclear Structure, Berkeley, California, July 29th - August 2nd, 2002, UC Berkeley, Clark Kerr Campus, in pres
    corecore