324,536 research outputs found

    The uphill turtle race: on short time nucleation probabilities

    Full text link
    The short time behavior of nucleation probabilities is studied by representing nucleation as diffusion in a potential well with escape over a barrier. If initially all growing nuclei start at the bottom of the well, the first nucleation time on average is larger than the inverse nucleation frequency. Explicit expressions are obtained for the short time probability of first nucleation. For very short times these become independent of the shape of the potential well. They agree well with numerical results from an exact enumeration scheme. For a large number N of growing nuclei the average first nucleation time scales as 1/\log N in contrast to the long-time nucleation frequency, which scales as 1/N. For linear potential wells closed form expressions are obtained for all times.Comment: 8 pages, submitted to J. Stat. Phy

    Nucleation of a new phase on a surface that is changing irreversibly with time

    Get PDF
    Nucleation of a new phase almost always starts at a surface. This surface is almost always assumed not to change with time. However, surfaces can roughen, partially dissolve and change chemically with time. Each of these irreversible changes will change the nucleation rate at the surface, resulting in a time-dependent nucleation rate. Here we use a simple model to show that partial surface dissolution can qualitatively change the nucleation process, in a way that is testable in experiment. The changing surface means that the nucleation rate is increasing with time. There is an initial period during which no nucleation occurs, followed by relatively rapid nucleation.Comment: 5 pages, 3 figures. Supplementary Movie 1 at http://personal.ph.surrey.ac.uk/~phs1rs/papers/supp_movie1_pre.mp4, description at http://personal.ph.surrey.ac.uk/~phs1rs/papers/supp_mat_pre14.pd

    Nucleation in Systems with Elastic Forces

    Full text link
    Systems with long-range interactions when quenced into a metastable state near the pseudo-spinodal exhibit nucleation processes that are quite different from the classical nucleation seen near the coexistence curve. In systems with long-range elastic forces the description of the nucleation process can be quite subtle due to the presence of bulk/interface elastic compatibility constraints. We analyze the nucleation process in a simple 2d model with elastic forces and show that the nucleation process generates critical droplets with a different structure than the stable phase. This has implications for nucleation in many crystal-crystal transitions and the structure of the final state

    Homogeneous nucleation in spatially inhomogeneous systems

    Get PDF
    Homogeneous nucleation of a vapor in the presence of the loss of clusters by diffusion and thermophoretic drift is investigated. Analytical results are obtained for the cluster size distribution and the rate of nucleation by solving the modified kinetic equation for nucleation. The implications of cluster loss by diffusion and phoretic drift on the onset of the homogeneous nucleation of silicon vapor in the horizontal epitaxial chemical vapor deposition reactor is discussed. The range of conditions under which the loss of subcritical clusters by diffusion and drift becomes important for the interpretation of diffusion cloud chamber experimental data of the onset conditions of the homogeneous nucleation of vapors is also delineated

    Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors

    Full text link
    We investigated domain nucleation process in epitaxial Pb(Zr,Ti)O3 capacitors under a modified piezoresponse force microscope. We obtained domain evolution images during polarization switching process and observed that domain nucleation occurs at particular sites. This inhomogeneous nucleation process should play an important role in an early stage of switching and under a high electric field. We found that the number of nuclei is linearly proportional to log(switching time), suggesting a broad distribution of activation energies for nucleation. The nucleation sites for a positive bias differ from those for a negative bias, indicating that most nucleation sites are located at ferroelectric/electrode interfaces

    A new parametrization for ambient particle formation over coniferous forests and its potential implications for the future

    Get PDF
    Atmospheric new particle formation is a general phenomenon observed over coniferous forests. So far nucleation is either parameterised as a function of gaseous sulphuric acid concentration only, which is unable to explain the observed seasonality of nucleation events at different measurement sites, or as a function of sulphuric acid and organic molecules. Here we introduce different nucleation parameters based on the interaction of sulphuric acid and terpene oxidation products and elucidate the individual importance. They include basic trace gas and meteorological measurements such as ozone and water vapour concentrations, temperature (for terpene emission) and UV B radiation as a proxy for OH radical formation. We apply these new parameters to field studies conducted at conducted at Finnish and German measurement sites and compare these to nucleation observations on a daily and annual scale. General agreement was found, although the specific compounds responsible for the nucleation process remain speculative. This can be interpreted as follows: During cooler seasons the emission of biogenic terpenes and the OH availability limits the new particle formation while towards warmer seasons the ratio of ozone and water vapour concentration seems to dominate the general behaviour. Therefore, organics seem to support ambient nucleation besides sulphuric acid or an OH-related compound. Using these nucleation parameters to extrapolate the current conditions to prognosed future concentrations of ozone, water vapour and organic concentrations leads to a significant potential increase in the nucleation event number
    corecore