37,509 research outputs found

    Routing Protocols for Lossy Wireless Networks

    Get PDF
    Tato práce zkoumá vhodnost a požadavky návrhu simulací pro simulátor NS-3 pro případ bezdrátových sítí používaných v měřící infrastruktuře společnosti Kamstrup. V práci je popsán simulátor NS-3 a je vytvořena základní implementace dvou protokolů. Wireless M-Bus jako příklad jednosměrného protokolu pro zařízení napájené z baterií. Simulace Wireless M-Bus je porovnána s daty naměřenými v reálném systému. NS-3 poskytuje flexibilní prostředí pro vývoj simulací různých síťových protokolů, včetně těch určených pro sítě inteligentních měřidel.This thesis investigates suitability and design constraints of the NS-3 Simulator for simulations of wireless protocols used by Kamstrup metering infrastructure. An overview of NS-3 Simulator is given and preliminary implementations of two protocols are created. Wireless M-Bus as an example of a one-way protocol for battery-powered devices. The simulation of Wireless M-Bus is compared with measurements obtained in a real deployment. NS-3 proves to be a flexible framework for developing simulations of various network protocols, including the ones used for smart metering.

    A QUIC Implementation for ns-3

    Full text link
    Quick UDP Internet Connections (QUIC) is a recently proposed transport protocol, currently being standardized by the Internet Engineering Task Force (IETF). It aims at overcoming some of the shortcomings of TCP, while maintaining the logic related to flow and congestion control, retransmissions and acknowledgments. It supports multiplexing of multiple application layer streams in the same connection, a more refined selective acknowledgment scheme, and low-latency connection establishment. It also integrates cryptographic functionalities in the protocol design. Moreover, QUIC is deployed at the application layer, and encapsulates its packets in UDP datagrams. Given the widespread interest in the new QUIC features, we believe that it is important to provide to the networking community an implementation in a controllable and isolated environment, i.e., a network simulator such as ns-3, in which it is possible to test QUIC's performance and understand design choices and possible limitations. Therefore, in this paper we present a native implementation of QUIC for ns-3, describing the features we implemented, the main assumptions and differences with respect to the QUIC Internet Drafts, and a set of examples.Comment: 8 pages, 4 figures. Please cite it as A. De Biasio, F. Chiariotti, M. Polese, A. Zanella, M. Zorzi, "A QUIC Implementation for ns-3", Proceedings of the Workshop on ns-3 (WNS3 '19), Firenze, Italy, 201

    Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module

    Full text link
    Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links suffer from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at different layers in the cellular network and the TCP/IP protocol stack have been proposed and studied. A valuable tool for the end-to-end performance analysis of mmWave cellular networks is the ns-3 mmWave module, which already models in detail the channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the Long Term Evolution (LTE) stack for the higher layers. In this paper we present an implementation for the ns-3 mmWave module of multi connectivity techniques for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA) and Dual Connectivity (DC), and discuss how they can be integrated to increase the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201

    Extending the Energy Framework for Network Simulator 3 (ns-3)

    Full text link
    The problem of designing and simulating optimal transmission protocols for energy harvesting wireless networks has recently received considerable attention, thus requiring for an accurate modeling of the energy harvesting process and a consequent redesign of the simulation framework to include it. While the current ns-3 energy framework allows the definition of new energy sources that incorporate the contribution of an energy harvester, the integration of an energy harvester component into an existing energy source is not straightforward using the existing energy framework. In this poster, we propose an extension of the energy framework currently released with ns-3 in order to explicitly introduce the concept of an energy harvester. Starting from the definition of the general interface, we then provide the implementation of two simple models for the energy harvester. In addition, we extend the set of implementations of the current energy framework to include a model for a supercapacitor energy source and a device energy model for the energy consumption of a sensor. Finally, we introduce the concept of an energy predictor, that gathers information from the energy source and harvester and use this information to predict the amount of energy that will be available in the future, and we provide an example implementation. As a result of these efforts, we believe that our contributions to the ns-3 energy framework will provide a useful tool to enhance the quality of simulations of energy-aware wireless networks.Comment: 2 pages, 4 figures. Poster presented at WNS3 2014, Atlanta, G

    Scalability analysis of large-scale LoRaWAN networks in ns-3

    Full text link
    As LoRaWAN networks are actively being deployed in the field, it is important to comprehend the limitations of this Low Power Wide Area Network technology. Previous work has raised questions in terms of the scalability and capacity of LoRaWAN networks as the number of end devices grows to hundreds or thousands per gateway. Some works have modeled LoRaWAN networks as pure ALOHA networks, which fails to capture important characteristics such as the capture effect and the effects of interference. Other works provide a more comprehensive model by relying on empirical and stochastic techniques. This work uses a different approach where a LoRa error model is constructed from extensive complex baseband bit error rate simulations and used as an interference model. The error model is combined with the LoRaWAN MAC protocol in an ns-3 module that enables to study multi channel, multi spreading factor, multi gateway, bi-directional LoRaWAN networks with thousands of end devices. Using the lorawan ns-3 module, a scalability analysis of LoRaWAN shows the detrimental impact of downstream traffic on the delivery ratio of confirmed upstream traffic. The analysis shows that increasing gateway density can ameliorate but not eliminate this effect, as stringent duty cycle requirements for gateways continue to limit downstream opportunities.Comment: 12 pages, submitted to the IEEE Internet of Things Journa

    Architecture, design and source code comparison of ns-2 and ns-3 network simulators

    Get PDF
    Ns-2 and its successor ns-3 are discrete-event simulators. Ns- 3 is still under development, but offers some interesting characteristics for developers while ns-2 still has a big user base. This paper remarks current differences between both tools from developers point of view. Leaving performance and resources consumption aside, technical issues described in the present paper might help to choose one or another alternative depending of simulation and project management requirements.Ministerio de Educación y Ciencia TIN2006-15617-C03-03Junta de Andalucía P06-TIC-229
    corecore