156,453 research outputs found
Dynamic distance-based shape features for gait recognition
We propose a novel skeleton-based approach to gait recognition using our Skeleton Variance Image. The core of our approach consists of employing the screened Poisson equation to construct a family of smooth distance functions associated with a given shape. The screened Poisson distance function approximation nicely absorbs and is relatively stable to shape boundary perturbations which allows us to define a rough shape skeleton. We demonstrate how our Skeleton Variance Image is a powerful gait cycle descriptor leading to a significant improvement over the existing state of the art gait recognition rate
Unsupervised Learning of Complex Articulated Kinematic Structures combining Motion and Skeleton Information
In this paper we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view image sequence. In contrast to prior motion information based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinematic structures with skeletal topology by a successive iterative merge process. The iterative merge process is guided by a skeleton distance function which is generated from a novel object boundary generation method from sparse points. Our main contributions can be summarised as follows: (i) Unsupervised complex articulated kinematic structure learning by combining motion and skeleton information. (ii) Iterative fine-to-coarse merging strategy for adaptive motion segmentation and structure smoothing. (iii) Skeleton estimation from sparse feature points. (iv) A new highly articulated object dataset containing multi-stage complexity with ground truth. Our experiments show that the proposed method out-performs state-of-the-art methods both quantitatively and qualitatively
RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins
The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning
Extracting curve-skeletons from digital shapes using occluding contours
Curve-skeletons are compact and semantically relevant shape descriptors, able to summarize both topology and pose of a wide range of digital objects. Most of the state-of-the-art algorithms for their computation rely on the type of geometric primitives used and sampling frequency. In this paper we introduce a formally sound and intuitive definition of curve-skeleton, then we propose a novel method for skeleton extraction that rely on the visual appearance of the shapes. To achieve this result we inspect the properties of occluding contours, showing how information about the symmetry axes of a 3D shape can be inferred by a small set of its planar projections. The proposed method is fast, insensitive to noise, capable of working with different shape representations, resolution insensitive and easy to implement
Co-occurrence Feature Learning for Skeleton based Action Recognition using Regularized Deep LSTM Networks
Skeleton based action recognition distinguishes human actions using the
trajectories of skeleton joints, which provide a very good representation for
describing actions. Considering that recurrent neural networks (RNNs) with Long
Short-Term Memory (LSTM) can learn feature representations and model long-term
temporal dependencies automatically, we propose an end-to-end fully connected
deep LSTM network for skeleton based action recognition. Inspired by the
observation that the co-occurrences of the joints intrinsically characterize
human actions, we take the skeleton as the input at each time slot and
introduce a novel regularization scheme to learn the co-occurrence features of
skeleton joints. To train the deep LSTM network effectively, we propose a new
dropout algorithm which simultaneously operates on the gates, cells, and output
responses of the LSTM neurons. Experimental results on three human action
recognition datasets consistently demonstrate the effectiveness of the proposed
model.Comment: AAAI 2016 conferenc
- …
