2,158,171 research outputs found
Regression with Linear Factored Functions
Many applications that use empirically estimated functions face a curse of
dimensionality, because the integrals over most function classes must be
approximated by sampling. This paper introduces a novel regression-algorithm
that learns linear factored functions (LFF). This class of functions has
structural properties that allow to analytically solve certain integrals and to
calculate point-wise products. Applications like belief propagation and
reinforcement learning can exploit these properties to break the curse and
speed up computation. We derive a regularized greedy optimization scheme, that
learns factored basis functions during training. The novel regression algorithm
performs competitively to Gaussian processes on benchmark tasks, and the
learned LFF functions are with 4-9 factored basis functions on average very
compact.Comment: Under review as conference paper at ECML/PKDD 201
A Novel FastICA Method for the Reference-based Contrast Functions
This paper deals with the efficient optimization problem of Cumulant-based contrast criteria in the Blind Source Separation (BSS) framework, in which sources are retrieved by maximizing the Kurtosis contrast function. Combined with the recently proposed reference-based contrast schemes, a new fast fixed-point (FastICA) algorithm is proposed for the case of linear and instantaneous mixture. Due to its quadratic dependence on the number of searched parameters, the main advantage of this new method consists in the significant decrement of computational speed, which is particularly striking with large number of samples. The method is essentially similar to the classical algorithm based on the Kurtosis contrast function, but differs in the fact that the reference-based idea is utilized. The validity of this new method was demonstrated by simulations
Alignment-free Genomic Analysis via a Big Data Spark Platform
Motivation: Alignment-free distance and similarity functions (AF functions,
for short) are a well established alternative to two and multiple sequence
alignments for many genomic, metagenomic and epigenomic tasks. Due to
data-intensive applications, the computation of AF functions is a Big Data
problem, with the recent Literature indicating that the development of fast and
scalable algorithms computing AF functions is a high-priority task. Somewhat
surprisingly, despite the increasing popularity of Big Data technologies in
Computational Biology, the development of a Big Data platform for those tasks
has not been pursued, possibly due to its complexity. Results: We fill this
important gap by introducing FADE, the first extensible, efficient and scalable
Spark platform for Alignment-free genomic analysis. It supports natively
eighteen of the best performing AF functions coming out of a recent hallmark
benchmarking study. FADE development and potential impact comprises novel
aspects of interest. Namely, (a) a considerable effort of distributed
algorithms, the most tangible result being a much faster execution time of
reference methods like MASH and FSWM; (b) a software design that makes FADE
user-friendly and easily extendable by Spark non-specialists; (c) its ability
to support data- and compute-intensive tasks. About this, we provide a novel
and much needed analysis of how informative and robust AF functions are, in
terms of the statistical significance of their output. Our findings naturally
extend the ones of the highly regarded benchmarking study, since the functions
that can really be used are reduced to a handful of the eighteen included in
FADE
On a discretization of confocal quadrics. II. A geometric approach to general parametrizations
We propose a discretization of classical confocal coordinates. It is based on
a novel characterization thereof as factorizable orthogonal coordinate systems.
Our geometric discretization leads to factorizable discrete nets with a novel
discrete analog of the orthogonality property. A discrete confocal coordinate
system may be constructed geometrically via polarity with respect to a sequence
of classical confocal quadrics. Various sequences correspond to various
discrete parametrizations. The coordinate functions of discrete confocal
quadrics are computed explicitly. The theory is illustrated with a variety of
examples in two and three dimensions. These include confocal coordinate systems
parametrized in terms of Jacobi elliptic functions. Connections with incircular
(IC) nets and a generalized Euler-Poisson-Darboux system are established.Comment: 48 pp, 20 figure
IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells
Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al
- …
