81,379 research outputs found
Infinitary Combinatory Reduction Systems: Normalising Reduction Strategies
We study normalising reduction strategies for infinitary Combinatory
Reduction Systems (iCRSs). We prove that all fair, outermost-fair, and
needed-fair strategies are normalising for orthogonal, fully-extended iCRSs.
These facts properly generalise a number of results on normalising strategies
in first-order infinitary rewriting and provide the first examples of
normalising strategies for infinitary lambda calculus
Alternatives to the MCMC method
The Markov Chain Monte Carlo method (MCMC) is often used to generate independent (pseudo) random numbers from a distribution with a density that is known only up to a normalising constant. With the MCMC method it is not necessary to compute the normalising constant (see e.g. Tierney, 1994; Besag, 2000). In this paper we show that the well-known acceptance-rejection algorithm also works with unnormalised densities, and so this algorithm can be used to confirm the results of the MCMC method in simple cases. We present an example with real data
Twisted invariant theory for reflection groups
Let be a reflection group acting on a vector space and let
be an automorphism of normalising . We study how acts on
invariants and covariants (for various representations) of , and properties
of its eigenspaces.Comment: 29 pages, 1 tabl
Strong normalisation for applied lambda calculi
We consider the untyped lambda calculus with constructors and recursively
defined constants. We construct a domain-theoretic model such that any term not
denoting bottom is strongly normalising provided all its `stratified
approximations' are. From this we derive a general normalisation theorem for
applied typed lambda-calculi: If all constants have a total value, then all
typeable terms are strongly normalising. We apply this result to extensions of
G\"odel's system T and system F extended by various forms of bar recursion for
which strong normalisation was hitherto unknown.Comment: 14 pages, paper acceptet at electronic journal LMC
The language of Stratified Sets is confluent and strongly normalising
We study the properties of the language of Stratified Sets (first-order logic
with and a stratification condition) as used in TST, TZT, and (with
stratifiability instead of stratification) in Quine's NF. We find that the
syntax forms a nominal algebra for substitution and that stratification and
stratifiability imply confluence and strong normalisation under rewrites
corresponding naturally to -conversion.Comment: arXiv admin note: text overlap with arXiv:1406.406
Characterisation of Strongly Normalising lambda-mu-Terms
We provide a characterisation of strongly normalising terms of the
lambda-mu-calculus by means of a type system that uses intersection and product
types. The presence of the latter and a restricted use of the type omega enable
us to represent the particular notion of continuation used in the literature
for the definition of semantics for the lambda-mu-calculus. This makes it
possible to lift the well-known characterisation property for
strongly-normalising lambda-terms - that uses intersection types - to the
lambda-mu-calculus. From this result an alternative proof of strong
normalisation for terms typeable in Parigot's propositional logical system
follows, by means of an interpretation of that system into ours.Comment: In Proceedings ITRS 2012, arXiv:1307.784
- …
