33,700 research outputs found

    The exit-time problem for a Markov jump process

    Full text link
    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.Comment: 15 pages, 7 figure

    Quasinonlocal coupling of nonlocal diffusions

    Full text link
    We developed a new self-adjoint, consistent, and stable coupling strategy for nonlocal diffusion models, inspired by the quasinonlocal atomistic-to-continuum method for crystalline solids. The proposed coupling model is coercive with respect to the energy norms induced by the nonlocal diffusion kernels as well as the L2L^2 norm, and it satisfies the maximum principle. A finite difference approximation is used to discretize the coupled system, which inherits the property from the continuous formulation. Furthermore, we design a numerical example which shows the discrepancy between the fully nonlocal and fully local diffusions, whereas the result of the coupled diffusion agrees with that of the fully nonlocal diffusion.Comment: 28 pages, 3 figures, ams.or

    Continuous dependence estimates for nonlinear fractional convection-diffusion equations

    Full text link
    We develop a general framework for finding error estimates for convection-diffusion equations with nonlocal, nonlinear, and possibly degenerate diffusion terms. The equations are nonlocal because they involve fractional diffusion operators that are generators of pure jump Levy processes (e.g. the fractional Laplacian). As an application, we derive continuous dependence estimates on the nonlinearities and on the Levy measure of the diffusion term. Estimates of the rates of convergence for general nonlinear nonlocal vanishing viscosity approximations of scalar conservation laws then follow as a corollary. Our results both cover, and extend to new equations, a large part of the known error estimates in the literature.Comment: In this version we have corrected Example 3.4 explaining the link with the results in [51,59

    A logistic equation with nonlocal interactions

    Get PDF
    We consider here a logistic equation, modeling processes of nonlocal character both in the diffusion and proliferation terms. More precisely, for populations that propagate according to a L\'evy process and can reach resources in a neighborhood of their position, we compare (and find explicit threshold for survival) the local and nonlocal case. As ambient space, we can consider: bounded domains, periodic environments, and transition problems, where the environment consists of a block of infinitesimal diffusion and an adjacent nonlocal one. In each of these cases, we analyze the existence/nonexistence of solutions in terms of the spectral properties of the domain. In particular, we give a detailed description of the fact that nonlocal populations may better adapt to sparse resources and small environments

    A quasinonlocal coupling method for nonlocal and local diffusion models

    Full text link
    In this paper, we extend the idea of "geometric reconstruction" to couple a nonlocal diffusion model directly with the classical local diffusion in one dimensional space. This new coupling framework removes interfacial inconsistency, ensures the flux balance, and satisfies energy conservation as well as the maximum principle, whereas none of existing coupling methods for nonlocal-to-local coupling satisfies all of these properties. We establish the well-posedness and provide the stability analysis of the coupling method. We investigate the difference to the local limiting problem in terms of the nonlocal interaction range. Furthermore, we propose a first order finite difference numerical discretization and perform several numerical tests to confirm the theoretical findings. In particular, we show that the resulting numerical result is free of artifacts near the boundary of the domain where a classical local boundary condition is used, together with a coupled fully nonlocal model in the interior of the domain

    Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons

    Get PDF
    We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the thermally generated magnons, or the nonlocal spin Seebeck effect (SSE), we observed a sign reversal which occurs at a certain heater-detector distance, and it is influenced by both the opacity of the YIG/heater interface and the YIG thickness. Our nonlocal SSE results can be qualitatively explained by the bulk-driven SSE mechanism together with the magnon diffusion model. Using a two-dimensional finite element model (2D-FEM), we estimated the bulk spin Seebeck coefficient of YIG at room temperature. The quantitative disagreement between the experimental and modeled results indicates more complex processes going on in addition to magnon diffusion and relaxation, especially close to the contacts.Comment: 16 pages, 11 figure
    corecore