250,929 research outputs found

    Nonlinear ptychographic coherent diffractive imaging

    Get PDF
    Ptychographic Coherent diffractive imaging (PCDI) is a significant advance in imaging allowing the measurement of the full electric field at a sample without use of any imaging optics. So far it has been confined solely to imaging of linear optical responses. In this paper we show that because of the coherence-preserving nature of nonlinear optical interactions, PCDI can be generalised to nonlinear optical imaging. We demonstrate second harmonic generation PCDI, directly revealing phase information about the nonlinear coefficients, and showing the general applicability of PCDI to nonlinear interactions

    Pre-determining the location of electromigrated gaps by nonlinear optical imaging

    Full text link
    In this paper we describe a nonlinear imaging method employed to spatially map the occurrence of constrictions occurring on an electrically-stressed gold nanowire. The approach consists at measuring the influence of a tightly focused ultrafast pulsed laser on the electronic transport in the nanowire. We found that structural defects distributed along the nanowire are efficient nonlinear optical sources of radiation and that the differential conductance is significantly decreased when the laser is incident on such electrically-induced morphological changes. This imaging technique is applied to pre-determined the location of the electrical failure before it occurs.Comment: 3 figure

    Nonlinear Negative Refraction by Difference Frequency Generation

    Full text link
    Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here we demonstrate theoretically and experimentally a new scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin BBO slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science

    Networks for Nonlinear Diffusion Problems in Imaging

    Get PDF
    A multitude of imaging and vision tasks have seen recently a major transformation by deep learning methods and in particular by the application of convolutional neural networks. These methods achieve impressive results, even for applications where it is not apparent that convolutions are suited to capture the underlying physics. In this work we develop a network architecture based on nonlinear diffusion processes, named DiffNet. By design, we obtain a nonlinear network architecture that is well suited for diffusion related problems in imaging. Furthermore, the performed updates are explicit, by which we obtain better interpretability and generalisability compared to classical convolutional neural network architectures. The performance of DiffNet tested on the inverse problem of nonlinear diffusion with the Perona-Malik filter on the STL-10 image dataset. We obtain competitive results to the established U-Net architecture, with a fraction of parameters and necessary training data

    Subwavelength imaging with opaque left-handed nonlinear lens

    Full text link
    We introduce the concept of subwavelength imaging with an opaque nonlinear left-handed lens by generating the second-harmonic field. We consider a slab of composite left-handed metamaterial with quadratic nonlinear response and show that such a flat lens can form, under certain conditions, an image of the second-harmonic field of the source being opaque at the fundamental frequency.Comment: 3 pages, 3 figure

    Strong nonlinear optical response of graphene flakes measured by four-wave mixing

    Get PDF
    We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically independent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.Comment: 4 pages, 5 figure

    Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping

    Full text link
    Despite the tremendous progresses in wavefront control through or inside complex scattering media, several limitations prevent reaching practical feasibility for nonlinear imaging in biological tissues. While the optimization of nonlinear signals might suffer from low signal to noise conditions and from possible artifacts at large penetration depths, it has nevertheless been largely used in the multiple scattering regime since it provides a guide star mechanism as well as an intrinsic compensation for spatiotemporal distortions. Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches under broadband illumination conditions, to perform nonlinear imaging. Using ultrashort pulse illumination with spectral bandwidth comparable but still lower than the spectral width of the scattering medium, we show strong nonlinear enhancements of several orders of magnitude, through thicknesses of a few transport mean free paths, which corresponds to millimeters in biological tissues. Linear TM refocusing is moreover compatible with fast scanning nonlinear imaging and potentially with acoustic based methods, which paves the way for nonlinear microscopy deep inside scattering media
    corecore