250,929 research outputs found
Nonlinear ptychographic coherent diffractive imaging
Ptychographic Coherent diffractive imaging (PCDI) is a significant advance in imaging allowing the measurement of the full electric field at a sample without use of any imaging optics. So far it has been confined solely to imaging of linear optical responses. In this paper we show that because of the coherence-preserving nature of nonlinear optical interactions, PCDI can be generalised to nonlinear optical imaging. We demonstrate second harmonic generation PCDI, directly revealing phase information about the nonlinear coefficients, and showing the general applicability of PCDI to nonlinear interactions
Pre-determining the location of electromigrated gaps by nonlinear optical imaging
In this paper we describe a nonlinear imaging method employed to spatially
map the occurrence of constrictions occurring on an electrically-stressed gold
nanowire. The approach consists at measuring the influence of a tightly focused
ultrafast pulsed laser on the electronic transport in the nanowire. We found
that structural defects distributed along the nanowire are efficient nonlinear
optical sources of radiation and that the differential conductance is
significantly decreased when the laser is incident on such electrically-induced
morphological changes. This imaging technique is applied to pre-determined the
location of the electrical failure before it occurs.Comment: 3 figure
Nonlinear Negative Refraction by Difference Frequency Generation
Negative refraction has attracted much interest for its promising capability
in imaging applications. Such an effect can be implemented by negative index
meta-materials, however, which are usually accompanied by high loss and
demanding fabrication processes. Recently, alternative nonlinear approaches
like phase conjugation and four wave mixing have shown advantages of low-loss
and easy-to-implement, but associated problems like narrow accepting angles can
still halt their practical applications. Here we demonstrate theoretically and
experimentally a new scheme to realize negative refraction by nonlinear
difference frequency generation with wide tunability, where a thin BBO slice
serves as a negative refraction layer bending the input signal beam to the
idler beam at a negative angle. Furthermore, we realize optical focusing effect
using such nonlinear negative refraction, which may enable many potential
applications in imaging science
Networks for Nonlinear Diffusion Problems in Imaging
A multitude of imaging and vision tasks have seen recently a major
transformation by deep learning methods and in particular by the application of
convolutional neural networks. These methods achieve impressive results, even
for applications where it is not apparent that convolutions are suited to
capture the underlying physics.
In this work we develop a network architecture based on nonlinear diffusion
processes, named DiffNet. By design, we obtain a nonlinear network architecture
that is well suited for diffusion related problems in imaging. Furthermore, the
performed updates are explicit, by which we obtain better interpretability and
generalisability compared to classical convolutional neural network
architectures. The performance of DiffNet tested on the inverse problem of
nonlinear diffusion with the Perona-Malik filter on the STL-10 image dataset.
We obtain competitive results to the established U-Net architecture, with a
fraction of parameters and necessary training data
Subwavelength imaging with opaque left-handed nonlinear lens
We introduce the concept of subwavelength imaging with an opaque nonlinear
left-handed lens by generating the second-harmonic field. We consider a slab of
composite left-handed metamaterial with quadratic nonlinear response and show
that such a flat lens can form, under certain conditions, an image of the
second-harmonic field of the source being opaque at the fundamental frequency.Comment: 3 pages, 3 figure
Strong nonlinear optical response of graphene flakes measured by four-wave mixing
We present the first experimental investigation of nonlinear optical
properties of graphene flakes. We find that at near infrared frequencies a
graphene monolayer exhibits a remarkably high third-order optical nonlinearity
which is practically independent of the wavelengths of incident light. The
nonlinear optical response can be utilized for imaging purposes, with image
contrasts of graphene which are orders of magnitude higher than those obtained
using linear microscopy.Comment: 4 pages, 5 figure
Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping
Despite the tremendous progresses in wavefront control through or inside
complex scattering media, several limitations prevent reaching practical
feasibility for nonlinear imaging in biological tissues. While the optimization
of nonlinear signals might suffer from low signal to noise conditions and from
possible artifacts at large penetration depths, it has nevertheless been
largely used in the multiple scattering regime since it provides a guide star
mechanism as well as an intrinsic compensation for spatiotemporal distortions.
Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches
under broadband illumination conditions, to perform nonlinear imaging. Using
ultrashort pulse illumination with spectral bandwidth comparable but still
lower than the spectral width of the scattering medium, we show strong
nonlinear enhancements of several orders of magnitude, through thicknesses of a
few transport mean free paths, which corresponds to millimeters in biological
tissues. Linear TM refocusing is moreover compatible with fast scanning
nonlinear imaging and potentially with acoustic based methods, which paves the
way for nonlinear microscopy deep inside scattering media
- …
