325,541 research outputs found

    Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems

    Full text link
    We show global well-posedness and exponential stability of equilibria for a general class of nonlinear dissipative bulk-interface systems. They correspond to thermodynamically consistent gradient structure models of bulk-interface interaction. The setting includes nonlinear slow and fast diffusion in the bulk and nonlinear coupled diffusion on the interface. Additional driving mechanisms can be included and non-smooth geometries and coefficients are admissible, to some extent. An important application are volume-surface reaction-diffusion systems with nonlinear coupled diffusion.Comment: 21 page

    Nonlinear diffusion equations as asymptotic limits of Cahn-Hilliard systems

    Full text link
    An asymptotic limit of a class of Cahn-Hilliard systems is investigated to obtain a general nonlinear diffusion equation. The target diffusion equation may reproduce a number of well-known model equations: Stefan problem, porous media equation, Hele-Shaw profile, nonlinear diffusion of singular logarithmic type, nonlinear diffusion of Penrose-Fife type, fast diffusion equation and so on. Namely, by setting the suitable potential of the Cahn-Hilliard systems, all of these problems can be obtained as limits of the Cahn-Hilliard related problems. Convergence results and error estimates are proved

    Markov vs. nonMarkovian processes A comment on the paper Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations by T.D. Frank

    Full text link
    The purpose of this comment is to correct mistaken assumptions and claims made in the paper Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker-Planck equations by T. D. Frank. Our comment centers on the claims of a nonlinear Markov process and a nonlinear Fokker-Planck equation. First, memory in transition densities is misidentified as a Markov process. Second, Frank assumes that one can derive a Fokker-Planck equation from a Chapman-Kolmogorov equation, but no proof was given that a Chapman-Kolmogorov equation exists for memory-dependent processes. A nonlinear Markov process is claimed on the basis of a nonlinear diffusion pde for a 1-point probability density. We show that, regardless of which initial value problem one may solve for the 1-point density, the resulting stochastic process, defined necessarily by the transition probabilities, is either an ordinary linearly generated Markovian one, or else is a linearly generated nonMarkovian process with memory. We provide explicit examples of diffusion coefficients that reflect both the Markovian and the memory-dependent cases. So there is neither a nonlinear Markov process nor nonlinear Fokker-Planck equation for a transition density. The confusion rampant in the literature arises in part from labeling a nonlinear diffusion equation for a 1-point probability density as nonlinear Fokker-Planck, whereas neither a 1-point density nor an equation of motion for a 1-point density defines a stochastic process, and Borland misidentified a translation invariant 1-point density derived from a nonlinear diffusion equation as a conditional probability density. In the Appendix we derive Fokker-Planck pdes and Chapman-Kolmogorov eqns. for stochastic processes with finite memory

    Quasichemical Models of Multicomponent Nonlinear Diffusion

    Full text link
    Diffusion preserves the positivity of concentrations, therefore, multicomponent diffusion should be nonlinear if there exist non-diagonal terms. The vast variety of nonlinear multicomponent diffusion equations should be ordered and special tools are needed to provide the systematic construction of the nonlinear diffusion equations for multicomponent mixtures with significant interaction between components. We develop an approach to nonlinear multicomponent diffusion based on the idea of the reaction mechanism borrowed from chemical kinetics. Chemical kinetics gave rise to very seminal tools for the modeling of processes. This is the stoichiometric algebra supplemented by the simple kinetic law. The results of this invention are now applied in many areas of science, from particle physics to sociology. In our work we extend the area of applications onto nonlinear multicomponent diffusion. We demonstrate, how the mechanism based approach to multicomponent diffusion can be included into the general thermodynamic framework, and prove the corresponding dissipation inequalities. To satisfy thermodynamic restrictions, the kinetic law of an elementary process cannot have an arbitrary form. For the general kinetic law (the generalized Mass Action Law), additional conditions are proved. The cell--jump formalism gives an intuitively clear representation of the elementary transport processes and, at the same time, produces kinetic finite elements, a tool for numerical simulation.Comment: 81 pages, Bibliography 118 references, a review paper (v4: the final published version

    Nonlinear diffusion equations with degenerate fast-decay mobility by coordinate transformation

    Full text link
    We prove an existence and uniqueness result for solutions to nonlinear diffusion equations with degenerate mobility posed on a bounded interval for a certain density uu. In case of \emph{fast-decay} mobilities, namely mobilities functions under a Osgood integrability condition, a suitable coordinate transformation is introduced and a new nonlinear diffusion equation with linear mobility is obtained. We observe that the coordinate transformation induces a mass-preserving scaling on the density and the nonlinearity, described by the original nonlinear mobility, is included in the diffusive process. We show that the rescaled density ρ\rho is the unique weak solution to the nonlinear diffusion equation with linear mobility. Moreover, the results obtained for the density ρ\rho allow us to motivate the aforementioned change of variable and to state the results in terms of the original density uu without prescribing any boundary conditions
    corecore