4,102 research outputs found

    Noise robustness of the nonlocality of entangled quantum states

    Get PDF
    We study the nonlocal properties of states resulting from the mixture of an arbitrary entangled state rho of two d-dimensional systems and completely depolarized noise, with respective weights p and 1-p. We first construct a local model for the case in which rho is maximally entangled and p at or below a certain bound. We then extend the model to arbitrary rho. Our results provide bounds on the resistance to noise of the nonlocal correlations of entangled states. For projective measurements, the critical value of the noise parameter p for which the state becomes local is at least asymptotically log(d) larger than the critical value for separability.Comment: 5 pages, no figures. It contains only minor changes, published versio

    Noise robustness in the detection of non separable random unitary maps

    Full text link
    We briefly review a recently proposed method to detect properties of quantum noise processes and quantum channels. We illustrate in detail the method for detecting non separable random unitary channels and consider in particular the explicit examples of the CNOT and CZ gates. We analyse their robustness in the presence of noise for several quantum noise models.Comment: 10 pages, 1 figur

    Wavelet Integrated CNNs for Noise-Robust Image Classification

    Full text link
    Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT). We present general DWT and Inverse DWT (IDWT) layers applicable to various wavelets like Haar, Daubechies, and Cohen, etc., and design wavelet integrated CNNs (WaveCNets) using these layers for image classification. In WaveCNets, feature maps are decomposed into the low-frequency and high-frequency components during the down-sampling. The low-frequency component stores main information including the basic object structures, which is transmitted into the subsequent layers to extract robust high-level features. The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets. Our experimental results on ImageNet and ImageNet-C (the noisy version of ImageNet) show that WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.Comment: CVPR accepted pape

    Noise Robustness of a Combined Phase Retrieval and Reconstruction Method for Phase-Contrast Tomography

    Get PDF
    Classical reconstruction methods for phase-contrast tomography consist of two stages: phase retrieval and tomographic reconstruction. A novel algebraic method combining the two was suggested by Kostenko et al. (Opt. Express, 21, 12185, 2013) and preliminary results demonstrating improved reconstruction compared to a two-stage method given. Using simulated free-space propagation experiments with a single sample-detector distance, we thoroughly compare the novel method with the two-stage method to address limitations of the preliminary results. We demonstrate that the novel method is substantially more robust towards noise; our simulations point to a possible reduction in counting times by an order of magnitude
    • …
    corecore