123,816 research outputs found
To what degree are philosophy and the ecological niche concept necessary in the ecological theory and conservation?
Ecology as a field produces philosophical anxiety, largely because it differs in scientific structure from classical physics. The hypothetical deductive models of classical physics are simple and predictive; general ecological models are predictably limited, as they refer to complex, multi-causal processes. Inattention to the conceptual structure of ecology usually imposes difficulties for the application of ecological models. Imprecise descriptions of ecological niche have obstructed the development of collective definitions, causing confusion in the literature and complicating communication between theoretical ecologists, conservationists and decision and policy-makers. Intense, unprecedented erosion of biodiversity is typical of the Anthropocene, and knowledge of ecology may provide solutions to lessen the intensification of species losses. Concerned philosophers and ecologists have characterised ecological niche theory as less useful in practice; however, some theorists maintain that is has relevant applications for conservation. Species niche modelling, for instance, has gained traction in the literature; however, there are few examples of its successful application. Philosophical analysis of the structure, precision and constraints upon the definition of a ‘niche’ may minimise the anxiety surrounding ecology, potentially facilitating communication between policy-makers and scientists within the various ecological subcultures. The results may enhance the success of conservation applications at both small and large scales
Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range
Aim To mitigate the threat invasive species pose to ecosystem functioning, reli- able risk assessment is paramount. Spatially explicit predictions of invasion risk obtained through bioclimatic envelope models calibrated with native species distribution data can play a critical role in invasive species management. Fore- casts of invasion risk to novel environments, however, remain controversial. Here, we assess how species’ association with human-modified habitats in the native range and within-taxon niche structure shape the distribution of invasive populations at biogeographical scales and influence the reliability of predictions of invasion risk.
Location Africa, Asia and Europe.
Methods We use ~1200 native and invasive ring-necked parakeet (Psittacula krameri) occurrences and associated data on establishment success in combi- nation with mtDNA-based phylogeographic structure to assess niche dynam- ics during biological invasion and to generate predictions of invasion risk. Niche dynamics were quantified in a gridded environmental space while bioclimatic models were created using the biomod2 ensemble modelling framework.
Results Ring-necked parakeets show considerable niche expansion into climates colder than their native range. Only when incorporating a measure of human modification of habitats within the native range do bioclimatic envelope mod- els yield credible predictions of invasion risk for parakeets across Europe. Inva- sion risk derived from models that account for differing niche requirements of phylogeographic lineages and those that do not achieve similar statistical accu- racy, but there are pronounced differences in areas predicted to be susceptible for invasion.
Main conclusions Information on within-taxon niche structure and especially association with humans in the native range can substantially improve predic- tive models of invasion risk. To provide policymakers with robust predictions of invasion risk, including these factors into bioclimatic envelope models is recommended
Formation of iron sulfide at faecal pellets and other microniches within suboxic surface sediment.
Faecal pellet deposition and bioturbation may lead to heterogeneously distributed particles of localized highly reactive organic matter (microniches) being present below the oxygen penetration depth. Where O2, NO3-, and Fe/Mn oxyhydroxides become depleted within these microniches or where they exist in zones of sulfate reduction, significant localized peaks in sulfide concentration can occur. These discrete zones of sulfide evolution can cause formation of iron sulfides that would not be predicted by analysis of the ‘bulk’ sediment. Using a reaction-transport model developed specifically for investigating spherical microniches, and incorporating 3D diffusion, we investigated how the rate constants of organic matter (OM) degradation, particle porosity and niche lifetime, affect dissolved sulfide and iron concentrations, and formation of iron sulfide at such niches. For all of the modelled scenarios the saturation index for iron sulfide is positive, indicating favourable conditions for FeS precipitation in all niches. Those simulations within the microniche lifetime range of 2.5 to 5 days gave comparable concentration ratios of sulfide to iron in solution within the niche to experimentally observed values. Our model results provide insight into the mechanisms of preservation of OM, including soft tissue, in the paleo record, by predicting the conditions that result in preferential deposition of precipitates at the edge of microniches. Decreases in porosity, shorter niche lifetimes and increases in OM degradation rate constants, all tend to increase the likelihood that FeS precipitation will preferentially occur at the edges of a niche, rather than uniformly throughout the niche volume
Mechanistic and Correlative Models of Ecological Niches
The suite of factors that drives where and under what conditions a species occurs has become the focus of intense research interest. Three general categories of methods have emerged by which researchers address questions in this area: mechanistic models of species’ requirements in terms of environmental conditions that are based on first principles of biophysics and physiology, correlational models based on environmental associations derived from analyses of geographic occurrences of species, and process-based simulations that estimate occupied distributional areas and associated environments from assumptions about niche dimensions and dispersal abilities. We review strengths and weaknesses of these sets of approaches, and identify significant advantages and disadvantages of each. Rather than identifying one or the other as ‘better,’ we suggest that researchers take great care to use the method best-suited to each specific research question, and be conscious of the weaknesses of any method, such that inappropriate interpretations are avoided
Recommended from our members
Biogeography of cyclamen: an application of phyloclimatic modelling
© The Systematics Association 2011. Cyclamen is a genus of popular garden plant, protected by Convention on International Trade in Endangered Species (CITES) legislation. Many of its species are morphologically and phenologically adapted to the seasonal climate of the Mediterranean region. Most species occur in geographic isolation and will readily hybridise with their sister species when brought together. We investigate the biogeography of Cyclamen and assess the impact of palaeogeography and palaeoclimate change on the distribution of the genus. We use techniques of phyloclimatic modelling (combining ecological niche modelling and phylogenetic character optimisation) to investigate the heritability of climatic preference and to reconstruct ancestral niches. Conventional and phyloclimatic approaches to biogeography are compared to provide an insight into the historic distribution of Cyclamen species and the potential impact of climate change on their future distribution. The predicted climate changes over the next century could see a northward shift of many species’ climatic niches to places outside their current ranges. However, such distribution changes are unlikely to occur through natural antbased dispersal, so conservation measures are likely to be required
Phylogenetic patterns of diversification across ecological niches in the African tree genus Guibourtia
Adaptive evolution is thought to be a major driver of organism diversification but the link between phenotypic traits and environmental niche remains little documented in tropical trees. Moreover, the respective roles of phylogenetic inertia and convergent evolution in shaping environmental niche and phenotypic trait similarity among related plant taxa is not well understood. Indeed, a correlation between species traits and species environmental niche among a sample of species may result from (1) convergent evolution if different environmental conditions have selected different sets of traits, or (2) phylogenetic inertia if niche and morphological differences between species are simply function of their phylogenetic divergence, in which case the trait-niche correlation does not imply any direct causal link. The aim of this study is to understand the relationships between environmental niche divergence and morphological divergence among congeneric species while accounting for phylogenetic inertia. This issue was addressed with the timber tree genus Guibourtia Benn. (Leguminosae, Detarioideae) which contains 13 African species occupying various forest habitat types, from rain forest to dry woodlands, with different climate and soil conditions. To this end, we combined morphological data with recent ecological niche modelling and used a highly resolved plastid phylogeny of the 13 African Guibourtia species. First, we demonstrated phylogenetic signals in both morphological traits (Mantel test between phylogenetic and morphological distances between species: r = 0.24, p = 0.031) and environmental niches (Mantel test between phylogenetic and niche distances between species: r = 0.23, p = 0.025). Second, we found a significant correlation between morphology and niche, at least between some of their respective dimensions (Mantel's r = 0.32, p = 0.013), even after accounting for phylogenetic inertia (Phylogenetic Independent Contrast: r = 0.69, p = 0.018). This correlation occurred between some leaflet and flower traits and solar radiation, relative humidity, precipitations and temperature range. Our results demonstrate the convergent evolution of some morphological traits in response to climatic factors in congeneric tree species and highlight the action of selective forces, along with neutral ones, in shaping the divergence between tropical plants
Niche tracking and rapid establishment of distributional equilibrium in the house sparrow show potential responsiveness of species to climate change.
The ability of species to respond to novel future climates is determined in part by their physiological capacity to tolerate climate change and the degree to which they have reached and continue to maintain distributional equilibrium with the environment. While broad-scale correlative climatic measurements of a species' niche are often described as estimating the fundamental niche, it is unclear how well these occupied portions actually approximate the fundamental niche per se, versus the fundamental niche that exists in environmental space, and what fitness values bounding the niche are necessary to maintain distributional equilibrium. Here, we investigate these questions by comparing physiological and correlative estimates of the thermal niche in the introduced North American house sparrow (Passer domesticus). Our results indicate that occupied portions of the fundamental niche derived from temperature correlations closely approximate the centroid of the existing fundamental niche calculated on a fitness threshold of 50% population mortality. Using these niche measures, a 75-year time series analysis (1930-2004) further shows that: (i) existing fundamental and occupied niche centroids did not undergo directional change, (ii) interannual changes in the two niche centroids were correlated, (iii) temperatures in North America moved through niche space in a net centripetal fashion, and consequently, (iv) most areas throughout the range of the house sparrow tracked the existing fundamental niche centroid with respect to at least one temperature gradient. Following introduction to a new continent, the house sparrow rapidly tracked its thermal niche and established continent-wide distributional equilibrium with respect to major temperature gradients. These dynamics were mediated in large part by the species' broad thermal physiological tolerances, high dispersal potential, competitive advantage in human-dominated landscapes, and climatically induced changes to the realized environmental space. Such insights may be used to conceptualize mechanistic climatic niche models in birds and other taxa
Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change
Ambrosia artemisiifolia L., native to North America, is a problematic invasive species, because of its highly allergenic pollen. The species is expected to expand its range due to climate change. By means of ecological niche modelling (ENM), we predict habitat suitability for A. artemisiifolia in Europe under current and future climatic conditions. Overall, we compared the performance and results of 16 algorithms commonly applied in ENM. As occurrence records of invasive species may be dominated by sampling bias, we also used data from the native range. To assess the quality of the modelling approaches we assembled a new map of current occurrences of A. artemisiifolia in Europe. Our results show that ENM yields a good estimation of the potential range of A. artemisiifolia in Europe only when using the North American data. A strong sampling bias in the European Global Biodiversity Information Facility (GBIF) data for A. artemisiifolia causes unrealistic results. Using the North American data reflects the realized European distribution very well. All models predict an enlargement and a northwards shift of potential range in Central and Northern Europe during the next decades. Climate warming will lead to an increase and northwards shift of A. artemisiifolia in Europe
- …
