4,339 research outputs found

    Neuronavigational approach for orbital neurofibroma excision: a case report

    Get PDF
    Orbital neurofibromas are uncommon in adults, accounting for approximately 1%-3% of all space occupying lesions of the orbit. The complex anatomy of the orbital region, with the pronounced vulnerability of its neurovascular structures, requires particular surgical precautions. Neuronavigation, as a high-tech device for intraoperative safety, represents a valuable option for the confined orbital space. However, the application of neuronavigation in orbital surgery has been rarely reported. The authors present a case report of a 32-year-old female with an isolated localized neurofibroma surgically approached by intraoperative navigation and a review of the literature

    Usefulness of image guidance in the surgical treatment of petrous apex cholesterol granuloma

    Get PDF
    The petrous apex is a pyramid-shaped structure, located medial to the inner ear and the intrapetrous segment of the internal carotid artery. Lesions of the petrous apex can be surgically treated through different surgical routes. Because of the important neurovascular structures located inside the temporal bone, anatomical 3D knowledge is paramount. For this reason, image-guided surgery could represent a useful tool. We report the case of a young woman who came to our observation for a trigeminal neuralgia due to a petrous apex cholesterol granuloma. The lesion was treated through the placement of a drainage tube via an infracochlear approach, with the aid of neuronavigation and intraoperative MRI. Preoperative CT scan images and intraoperative MRI images were fused for surgical planning. The accuracy of the neuronavigation system has proved to be good, and the safety of the procedure was enhanced. Therefore, neuronavigation and intraoperative MRI, though not available in all neurootological centres, should be considered useful tools in these challenging procedures

    A computational model for real-time calculation of electric field due to transcranial magnetic stimulation in clinics

    Get PDF
    The aim of this paper is to propose an approach for an accurate and fast (real-time) computation of the electric field induced inside the whole brain volume during a transcranial magnetic stimulation (TMS) procedure. The numerical solution implements the admittance method for a discretized realistic brain model derived from Magnetic Resonance Imaging (MRI). Results are in a good agreement with those obtained using commercial codes and require much less computational time. An integration of the developed codewith neuronavigation toolswill permit real-time evaluation of the stimulated brain regions during the TMSdelivery, thus improving the efficacy of clinical applications

    The role of neuronavigation in intracranial endoscopic procedures

    Get PDF
    In occlusive hydrocephalus, cysts and some ventricular tumours, neuroendoscopy has replaced shunt operations and microsurgery. There is an ongoing discussion if neuronavigation should routinely accompany neuroendoscopy or if its use should be limited to selected cases. In this prospective clinical series, the role of neuronavigation during intracranial endoscopic procedures was investigated. In 126 consecutive endoscopic procedures (endoscopic third ventriculostomy, ETV, n = 65; tumour biopsy/resection, n = 36; non-tumourous cyst fenestration, n = 23; abscess aspiration and hematoma removal, n = 1 each), performed in 121 patients, neuronavigation was made available. After operation and videotape review, the surgeon had to categorize the role of neuronavigation: not beneficial; beneficial, but not essential; essential. Overall, neuronavigation was of value in more than 50% of the operations, but its value depended on the type of the procedure. Neuronavigation was beneficial, but not essential in 16 ETVs (24.6%), 19 tumour biopsies/resections (52.7%) and 14 cyst fenestrations (60.9%). Neuronavigation was essential in 1 ETV (2%), 11 tumour biopsies/resections (30.6%) and 8 cyst fenestrations (34.8%). Neuronavigation was not needed/not used in 48 ETVs (73.9%), 6 endoscopic tumour operations (16.7%) and 1 cyst fenestration (4.3%). For ETV, neuronavigation mostly is not required. In the majority of the remaining endoscopic procedures, however, neuronavigation is at least beneficial. This finding suggests integrating neuronavigation into the operative routine in endoscopic tumour operations and cyst fenestrations

    Principles of Pituitary Surgery

    Get PDF
    Key Points 1. Understand the principles of pituitary surgery including the key-elements of surgical planning and decision-making 2. Identify the technical nuances distinguishing the endoscopic from the microscopic transsphenoidal approach 3. Understand the strategies utilized during the nasal, sphenoidal, and sellar stages of surgery that maximize tumor resection while minimizing complications and preserving sino- nasal anatomy/functio

    Causal evidence that intrinsic beta frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS

    Get PDF
    Correlative evidence provides support for the idea that brain oscillations underpin neural computations. Recent work using rhythmic stimulation techniques in humans provide causal evidence but the interactions of these external signals with intrinsic rhythmicity remain unclear. Here, we show that sensorimotor cortex precisely follows externally applied rhythmic TMS (rTMS) stimulation in the beta-band but that the elicited responses are strongest at the intrinsic individual beta-peak-frequency. While these entrainment effects are of short duration, even subthreshold rTMS pulses propagate through the network and elicit significant cortico-spinal coupling, particularly when stimulated at the individual beta-frequency. Our results show that externally enforced rhythmicity interacts with intrinsic brain rhythms such that the individual peak frequency determines the effect of rTMS. The observed downstream spinal effect at the resonance frequency provides evidence for the causal role of brain rhythms for signal propagation

    In vivo measurement of human brain elasticity using a light aspiration device

    Full text link
    The brain deformation that occurs during neurosurgery is a serious issue impacting the patient "safety" as well as the invasiveness of the brain surgery. Model-driven compensation is a realistic and efficient solution to solve this problem. However, a vital issue is the lack of reliable and easily obtainable patient-specific mechanical characteristics of the brain which, according to clinicians' experience, can vary considerably. We designed an aspiration device that is able to meet the very rigorous sterilization and handling process imposed during surgery, and especially neurosurgery. The device, which has no electronic component, is simple, light and can be considered as an ancillary instrument. The deformation of the aspirated tissue is imaged via a mirror using an external camera. This paper describes the experimental setup as well as its use during a specific neurosurgery. The experimental data was used to calibrate a continuous model. We show that we were able to extract an in vivo constitutive law of the brain elasticity: thus for the first time, measurements are carried out per-operatively on the patient, just before the resection of the brain parenchyma. This paper discloses the results of a difficult experiment and provide for the first time in-vivo data on human brain elasticity. The results point out the softness as well as the highly non-linear behavior of the brain tissue.Comment: Medical Image Analysis (2009) accept\'

    Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors:A randomized controlled trial

    Get PDF
    Object: The goal of this study was to assess the impact of neuronavigation on the cytoreductive treatment of solitary contrast-enhancing intracerebral tumors and outcomes of this treatment in cases in which neuronavigation was preoperatively judged to be redundant.Methods: The authors conducted a prospective randomized study in which 45 patients, each harboring a solitary contrast-enhancing intracerebral tumor, were randomized for surgery with or without neuronavigation. Peri- and postoperative parameters under investigation included the following: duration of the procedure; surgeon's estimate of the usefulness of neuronavigation; quantification of the extent of resection, determined using magnetic resonance imaging; and the postoperative course, as evaluated by neurological examinations, the patient's quality-of-life self-assessment, application of the Barthel index and the Karnofsky Performance Scale score, and the patient's time of death. The mean amount of residual tumor tissue was 28.9% for standard surgery (SS) and 13.8% for surgery involving neuronavigation (SN). The corresponding mean amounts of residual contrast-enhancing tumor tissue were 29.2 and 24.4%, respectively. These differences were not significant. Gross-total removal (GTR) was achieved in five patients who underwent SS and in three who underwent SN. Median survival was significantly shorter in the SN group (5.6 months compared with 9 months, unadjusted hazard ratio = 1.6); however, this difference may be attributable to the coincidental early death of three patients in the SN group. No discernible important effect on the patients' 3-month postoperative course was identified.Conclusions: There is no rationale for the routine use of neuronavigation to improve the extent of tumor resection and prognosis in patients harboring a solitary enhancing intracerebral lesion when neuronavigation is not already deemed advantageous because of the size or location of the lesion.</p
    • …
    corecore