17,673 research outputs found
Adaptive motor control and learning in a spiking neural network realised on a mixed-signal neuromorphic processor
Neuromorphic computing is a new paradigm for design of both the computing
hardware and algorithms inspired by biological neural networks. The event-based
nature and the inherent parallelism make neuromorphic computing a promising
paradigm for building efficient neural network based architectures for control
of fast and agile robots. In this paper, we present a spiking neural network
architecture that uses sensory feedback to control rotational velocity of a
robotic vehicle. When the velocity reaches the target value, the mapping from
the target velocity of the vehicle to the correct motor command, both
represented in the spiking neural network on the neuromorphic device, is
autonomously stored on the device using on-chip plastic synaptic weights. We
validate the controller using a wheel motor of a miniature mobile vehicle and
inertia measurement unit as the sensory feedback and demonstrate online
learning of a simple 'inverse model' in a two-layer spiking neural network on
the neuromorphic chip. The prototype neuromorphic device that features 256
spiking neurons allows us to realise a simple proof of concept architecture for
the purely neuromorphic motor control and learning. The architecture can be
easily scaled-up if a larger neuromorphic device is available.Comment: 6+1 pages, 4 figures, will appear in one of the Robotics conference
Neuro-memristive Circuits for Edge Computing: A review
The volume, veracity, variability, and velocity of data produced from the
ever-increasing network of sensors connected to Internet pose challenges for
power management, scalability, and sustainability of cloud computing
infrastructure. Increasing the data processing capability of edge computing
devices at lower power requirements can reduce several overheads for cloud
computing solutions. This paper provides the review of neuromorphic
CMOS-memristive architectures that can be integrated into edge computing
devices. We discuss why the neuromorphic architectures are useful for edge
devices and show the advantages, drawbacks and open problems in the field of
neuro-memristive circuits for edge computing
Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective
On metrics of density and power efficiency, neuromorphic technologies have
the potential to surpass mainstream computing technologies in tasks where
real-time functionality, adaptability, and autonomy are essential. While
algorithmic advances in neuromorphic computing are proceeding successfully, the
potential of memristors to improve neuromorphic computing have not yet born
fruit, primarily because they are often used as a drop-in replacement to
conventional memory. However, interdisciplinary approaches anchored in machine
learning theory suggest that multifactor plasticity rules matching neural and
synaptic dynamics to the device capabilities can take better advantage of
memristor dynamics and its stochasticity. Furthermore, such plasticity rules
generally show much higher performance than that of classical Spike Time
Dependent Plasticity (STDP) rules. This chapter reviews the recent development
in learning with spiking neural network models and their possible
implementation with memristor-based hardware
Convolutional Networks for Fast, Energy-Efficient Neuromorphic Computing
Deep networks are now able to achieve human-level performance on a broad
spectrum of recognition tasks. Independently, neuromorphic computing has now
demonstrated unprecedented energy-efficiency through a new chip architecture
based on spiking neurons, low precision synapses, and a scalable communication
network. Here, we demonstrate that neuromorphic computing, despite its novel
architectural primitives, can implement deep convolution networks that i)
approach state-of-the-art classification accuracy across 8 standard datasets,
encompassing vision and speech, ii) perform inference while preserving the
hardware's underlying energy-efficiency and high throughput, running on the
aforementioned datasets at between 1200 and 2600 frames per second and using
between 25 and 275 mW (effectively > 6000 frames / sec / W) and iii) can be
specified and trained using backpropagation with the same ease-of-use as
contemporary deep learning. For the first time, the algorithmic power of deep
learning can be merged with the efficiency of neuromorphic processors, bringing
the promise of embedded, intelligent, brain-inspired computing one step closer.Comment: 7 pages, 6 figure
Perspective: Organic electronic materials and devices for neuromorphic engineering
Neuromorphic computing and engineering has been the focus of intense research
efforts that have been intensified recently by the mutation of Information and
Communication Technologies (ICT). In fact, new computing solutions and new
hardware platforms are expected to emerge to answer to the new needs and
challenges of our societies. In this revolution, lots of candidates
technologies are explored and will require leveraging of the pro and cons. In
this perspective paper belonging to the special issue on neuromorphic
engineering of Journal of Applied Physics, we focus on the current achievements
in the field of organic electronics and the potentialities and specificities of
this research field. We highlight how unique material features available
through organic materials can be used to engineer useful and promising
bioinspired devices and circuits. We also discuss about the opportunities that
organic electronic are offering for future research directions in the
neuromorphic engineering field
- …
