495,952 research outputs found
Early motor trajectories predict motor but not cognitive function in preterm- and term-born adults without pre-existing neurological conditions
Very preterm (VP; 0.05). Motor problems in childhood were homotypically associated with poorer motor competence in adulthood. Similarly, early cognitive problems were homotypically associated with adult cognitive outcomes. Thus, both motor and cognitive function should be assessed in routine follow-up during childhood
Contemporary splinting practice in the UK for adults with neurological dysfunction: A cross-sectional survey
This article is made available through the Brunel Open Access Publishing Fund.Aim: To explore the contemporary splinting practice of UK occupational therapists and physiotherapists for adults with neurological dysfunction.
Method: Cross-sectional online survey of members of the Association of Chartered Physiotherapists in Neurology and College of Occupational Therapists Specialist Section Neurological Practice.
Results: Four hundred and twenty therapists completed the survey. Contracture management is the most common rationale for therapists splinting adults with neurological dysfunction. Other shared therapeutic goals of splinting include maintaining muscle and joint alignment, spasticity management, function, pain management and control of oedema. Considerable clinical uncertainty was uncovered in practice particularly around wearing regimens of splints. Most therapists have access to locally-derived splinting guidelines, which may contribute to this diversity of practice.
Conclusions: This study provides a unique insight into aspects of contemporary splinting practice among UK therapists, who belong to a specialist neurological professional network and work in a number of different health-care settings with adults who have a neurological condition. Study findings show a wide variation in splinting practice, thereby indicating a potential need for national guidance to assist therapists in this area of clinical uncertainty. Further research is required to establish best practice parameters for splinting in neurological rehabilitation
Is there an association of vitamin B12 status with neurological function in older people? A systematic review.
Low vitamin B12 status is common in older people; however, its public health significance in terms of neurological manifestations remains unclear. The present systematic review evaluated the association of vitamin B12 status with neurological function and clinically relevant neurological outcomes in adults aged 50+ years. A systematic search of nine bibliographic databases (up to March 2013) identified twelve published articles describing two longitudinal and ten cross-sectional analyses. The included study populations ranged in size (n 28-2287) and mean/median age (range 65-81 years). Studies reported various neurological outcomes: nerve function; clinically measured signs and symptoms of nerve function; self-reported neurological symptoms. Studies were assessed for risk of bias, and results were synthesised qualitatively. Among the general population groups of older people, one longitudinal study reported no association, and four of seven cross-sectional studies reported limited evidence of an association of vitamin B12 status with some, but not all, neurological outcomes. Among groups with clinical and/or biochemical evidence of low vitamin B12 status, one longitudinal study reported an association of vitamin B12 status with some, but not all, neurological outcomes and three cross-sectional analyses reported no association. Overall, there is limited evidence from observational studies to suggest an association of vitamin B12 status with neurological function in older people. The heterogeneity and quality of the evidence base preclude more definitive conclusions, and further high-quality research is needed to better inform understanding of public health significance in terms of neurological function of vitamin B12 status in older people
Monoaminergic Neuropathology in Alzheimer's disease
Acknowledgments This work was supported by The Croatian Science Foundation grant. no. IP-2014-09-9730 (“Tau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimer’s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compounds”) and European Cooperation in Science and Technology (COST) Action CM1103 (“Stucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”). PRH is supported in part by NIH grant P50 AG005138.Peer reviewedPostprin
Human Neurological Development: Past, Present and Future
Neurological development is considered as the major human potential. Vision, vestibular function, intelligence, and nutrition are discussed as well as the treatment of neurological disfunctions, coma, and convulsive seizures
Value and efficacy of transcranial direct current stimulation in the rehabilitation of neurocognitive disorders: A critical review since 2000.
open3siNon-invasive brain stimulation techniques, including transcranial direct current stimulation (t-DCS) have been used in the rehabilitation of cognitive function in a spectrum of neurological disorders. The present review outlines methodological communalities and differences of t-DCS procedures in neurocognitive rehabilitation. We consider the efficacy of tDCS for the management of specific cognitive deficits in four main neurological disorders by providing a critical analysis of recent studies that have used t-DCS to improve cognition in patients with Parkinson’s Disease, Alzheimer’s Disease, Hemi-spatial Neglect and Aphasia. The evidence from this innovative approach to cognitive rehabilitation suggests that tDCS can influence cognition. However, the results show a high variability between studies both on the methodological approach adopted and the cognitive functions aspects. The review also focuses both on methodological issues such as technical aspects of the stimulation ( electrodes position and dimension; current intensity; duration of protocol) and on the inclusion of appropriate assessment tools for cognition. A further aspect considered is the best timing to administer tDCS: before, during after cognitive rehabilitation. We conclude that more studies with shared methodology are needed to have a better understanding of the efficacy of tDCS as a new tool for rehabilitation of cognitive disorders in a range of neurological disordersopenCappon, D; Jahanshahi, M; Bisiacchi, PCappon, Davide; Jahanshahi, M; Bisiacchi, Patrizi
Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies
Acknowledgments This work was supported by The Croatian Science Foundation grant No. IP-2014-09-9730 (“Tau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimer’s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compounds”) and European Cooperation in Science and Technology (COST) Action CM1103 (“Stucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”). PRH is supported in part by NIH grant P50 AG005138. We also thank Mate Babić for help in preparation of schematics.Peer reviewedPublisher PD
Synaptic plasticity and cognitive function are disrupted in the absence of Lrp4.
Lrp4, the muscle receptor for neuronal Agrin, is expressed in the hippocampus and areas involved in cognition. The function of Lrp4 in the brain, however, is unknown, as Lrp4-/- mice fail to form neuromuscular synapses and die at birth. Lrp4-/- mice, rescued for Lrp4 expression selectively in muscle, survive into adulthood and showed profound deficits in cognitive tasks that assess learning and memory. To learn whether synapses form and function aberrantly, we used electrophysiological and anatomical methods to study hippocampal CA3-CA1 synapses. In the absence of Lrp4, the organization of the hippocampus appeared normal, but the frequency of spontaneous release events and spine density on primary apical dendrites were reduced. CA3 input was unable to adequately depolarize CA1 neurons to induce long-term potentiation. Our studies demonstrate a role for Lrp4 in hippocampal function and suggest that patients with mutations in Lrp4 or auto-antibodies to Lrp4 should be evaluated for neurological deficits
- …
