3,945 research outputs found
Safe Mutations for Deep and Recurrent Neural Networks through Output Gradients
While neuroevolution (evolving neural networks) has a successful track record
across a variety of domains from reinforcement learning to artificial life, it
is rarely applied to large, deep neural networks. A central reason is that
while random mutation generally works in low dimensions, a random perturbation
of thousands or millions of weights is likely to break existing functionality,
providing no learning signal even if some individual weight changes were
beneficial. This paper proposes a solution by introducing a family of safe
mutation (SM) operators that aim within the mutation operator itself to find a
degree of change that does not alter network behavior too much, but still
facilitates exploration. Importantly, these SM operators do not require any
additional interactions with the environment. The most effective SM variant
capitalizes on the intriguing opportunity to scale the degree of mutation of
each individual weight according to the sensitivity of the network's outputs to
that weight, which requires computing the gradient of outputs with respect to
the weights (instead of the gradient of error, as in conventional deep
learning). This safe mutation through gradients (SM-G) operator dramatically
increases the ability of a simple genetic algorithm-based neuroevolution method
to find solutions in high-dimensional domains that require deep and/or
recurrent neural networks (which tend to be particularly brittle to mutation),
including domains that require processing raw pixels. By improving our ability
to evolve deep neural networks, this new safer approach to mutation expands the
scope of domains amenable to neuroevolution
Deep Neuroevolution of Recurrent and Discrete World Models
Neural architectures inspired by our own human cognitive system, such as the
recently introduced world models, have been shown to outperform traditional
deep reinforcement learning (RL) methods in a variety of different domains.
Instead of the relatively simple architectures employed in most RL experiments,
world models rely on multiple different neural components that are responsible
for visual information processing, memory, and decision-making. However, so far
the components of these models have to be trained separately and through a
variety of specialized training methods. This paper demonstrates the surprising
finding that models with the same precise parts can be instead efficiently
trained end-to-end through a genetic algorithm (GA), reaching a comparable
performance to the original world model by solving a challenging car racing
task. An analysis of the evolved visual and memory system indicates that they
include a similar effective representation to the system trained through
gradient descent. Additionally, in contrast to gradient descent methods that
struggle with discrete variables, GAs also work directly with such
representations, opening up opportunities for classical planning in latent
space. This paper adds additional evidence on the effectiveness of deep
neuroevolution for tasks that require the intricate orchestration of multiple
components in complex heterogeneous architectures
- …
