1,075,055 research outputs found

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain

    Deep Complex Networks

    Full text link
    At present, the vast majority of building blocks, techniques, and architectures for deep learning are based on real-valued operations and representations. However, recent work on recurrent neural networks and older fundamental theoretical analysis suggests that complex numbers could have a richer representational capacity and could also facilitate noise-robust memory retrieval mechanisms. Despite their attractive properties and potential for opening up entirely new neural architectures, complex-valued deep neural networks have been marginalized due to the absence of the building blocks required to design such models. In this work, we provide the key atomic components for complex-valued deep neural networks and apply them to convolutional feed-forward networks and convolutional LSTMs. More precisely, we rely on complex convolutions and present algorithms for complex batch-normalization, complex weight initialization strategies for complex-valued neural nets and we use them in experiments with end-to-end training schemes. We demonstrate that such complex-valued models are competitive with their real-valued counterparts. We test deep complex models on several computer vision tasks, on music transcription using the MusicNet dataset and on Speech Spectrum Prediction using the TIMIT dataset. We achieve state-of-the-art performance on these audio-related tasks

    Explosive synchronization transitions in complex neural network

    Full text link
    It has been recently reported that explosive synchronization transitions can take place in networks of phase oscillators [G\'omez-Garde\~nes \emph{et al.} Phys.Rev.Letts. 106, 128701 (2011)] and chaotic oscillators [Leyva \emph{et al.} Phys.Rev.Letts. 108, 168702 (2012)]. Here, we investigate the effect of a microscopic correlation between the dynamics and the interacting topology of coupled FitzHugh-Nagumo oscillators on phase synchronization transition in Barab\'asi-Albert (BA) scale-free networks and Erd\"os-R\'enyi (ER) random networks. We show that, if the width of distribution of natural frequencies of the oscillations is larger than a threshold value, a strong hysteresis loop arises in the synchronization diagram of BA networks due to the positive correlation between node degrees and natural frequencies of the oscillations, indicating the evidence of an explosive transition towards synchronization of relaxation oscillators system. In contrast to the results in BA networks, in more homogeneous ER networks the synchronization transition is always of continuous type regardless of the the width of the frequency distribution. Moreover, we consider the effect of degree-mixing patterns on the nature of the synchronization transition, and find that the degree assortativity is unfavorable for the occurrence of such an explosive transition.Comment: 5 pages, 5 figure

    Stable Irregular Dynamics in Complex Neural Networks

    Full text link
    For infinitely large sparse networks of spiking neurons mean field theory shows that a balanced state of highly irregular activity arises under various conditions. Here we analytically investigate the microscopic irregular dynamics in finite networks of arbitrary connectivity, keeping track of all individual spike times. For delayed, purely inhibitory interactions we demonstrate that the irregular dynamics is not chaotic but rather stable and convergent towards periodic orbits. Moreover, every generic periodic orbit of these dynamical systems is stable. These results highlight that chaotic and stable dynamics are equally capable of generating irregular activity.Comment: 10 pages, 2 figure

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    Hyperplane Neural Codes and the Polar Complex

    Full text link
    Hyperplane codes are a class of convex codes that arise as the output of a one layer feed-forward neural network. Here we establish several natural properties of stable hyperplane codes in terms of the {\it polar complex} of the code, a simplicial complex associated to any combinatorial code. We prove that the polar complex of a stable hyperplane code is shellable and show that most currently known properties of the hyperplane codes follow from the shellability of the appropriate polar complex.Comment: 23 pages, 5 figures. To appear in Proceedings of the Abel Symposiu

    Convolutional Drift Networks for Video Classification

    Full text link
    Analyzing spatio-temporal data like video is a challenging task that requires processing visual and temporal information effectively. Convolutional Neural Networks have shown promise as baseline fixed feature extractors through transfer learning, a technique that helps minimize the training cost on visual information. Temporal information is often handled using hand-crafted features or Recurrent Neural Networks, but this can be overly specific or prohibitively complex. Building a fully trainable system that can efficiently analyze spatio-temporal data without hand-crafted features or complex training is an open challenge. We present a new neural network architecture to address this challenge, the Convolutional Drift Network (CDN). Our CDN architecture combines the visual feature extraction power of deep Convolutional Neural Networks with the intrinsically efficient temporal processing provided by Reservoir Computing. In this introductory paper on the CDN, we provide a very simple baseline implementation tested on two egocentric (first-person) video activity datasets.We achieve video-level activity classification results on-par with state-of-the art methods. Notably, performance on this complex spatio-temporal task was produced by only training a single feed-forward layer in the CDN.Comment: Published in IEEE Rebooting Computin
    corecore